Закон ома для полной цепи
Centr86.ru

Ремонт бытовой техники

Закон ома для полной цепи

Формулировка и определение закона Ома

Закон Ома для всей цепи является одним из наиболее фундаментальных и важных законов, регулирующих работу электрических и электронных схем. Он описывает взаимоотношение тока, напряжения и сопротивления для линейного участка цепи, так что если два известны, третий может быть получен расчетным путем.

Закон Ома — основа электротехники

Это основное уравнение, используемое для изучения электрических цепей, было получено экспериментальным путем Георгом Симоном Омом. Он родился в Эрлангене Германии в 1787 году и поступил в университет этого города в 1805 году, где он получил докторскую степень. Георг преподавал математику в школах и проводил эксперименты по физике в школьной физической лаборатории, пытаясь понять принципы электромагнетизма.

В 1827 году он опубликовал статьи, в которых описана математическая модель того, как контуры проводят тепло в работах Фурье. Ом получил экспериментальные данные, на базе которых впервые смог сформулировать свой закон 8 января 1826 года. Он установил, что разность потенциалов между двумя точками в цепи равна произведению тока между ними на общее сопротивление всех электрических устройств. Чем больше напряжение батареи или ее общая разность электропотенциалов, тем больше будет ее ток. Аналогично, с большим сопротивлением он будет меньше.

Но его исследования не нашли должного понимания и Георг оставил свою работу в Кельне. Только в 1833 году он получил должность профессора в Нюрнберге. Выводы Ома послужили катализатором для новейших исследований по электричеству. В 1841 году ученого наградили медалью Копли, а в 1872 году «Ом» был принят в качестве единицы сопротивления в электрических цепях.

Закон Ома для полной электрической цепи описывает протекание тока через проводящие металлы, когда применяются различные уровни напряжения. Некоторые материалы, такие как электропровода, имеют небольшое сопротивление току — этот тип материала называется проводником.

Важно! В других случаях материал может препятствовать протеканию тока, но, тем не менее, допускает его использование. В электрических цепях эти компоненты часто называют резисторами. Существуют материалы, которые практически не пропускают ток, они называются изоляторами.

Формула закона Ома

Первый Закон Ома устанавливает, что разница потенциалов между двумя точками резистора пропорциональна току. Более того, согласно этому закону, соотношение между потенциалом и током всегда является постоянным для омических резисторов.

V — напряжение/электропотенциал (В);

R — электросопротивление (ом);

I — электрический ток.

В нем U является скалярной величиной и меряется в (В). Разница в электропотенциалах между двумя точками цепи, указывает на наличие электросопротивления. Когда I проходит через резистивный элемент R, происходит падение электрического потенциала. Это различие возникает из-за рассеивания энергии, называемым эффектом Джоуля. I измеряет поток зарядов через тело в (А) и прямо пропорционален сопротивлению провода.

Второй закон Ома говорит о том, что электросопротивление R представляет собой свойство из тела, которое регулирует проходимость I. Это свойство зависит от геометрических факторов тела, таких как длина или площадь сечения участка и от вызываемой величины R. Его количество зависит исключительно от материала участка.

R — электросопротивление (Ом);

ρ — удельное электросопротивление провода (Ом.м);

L — протяженность проводника (м);

S — площадь сечения провода (м2).

Омическим резистором называется любое тело, способное представлять постоянное сопротивление для данного диапазона напряжений. График напряжения как функция тока для омических резисторов является линейным. Резистор можно считать омическим в диапазоне, в котором его потенциал линейно возрастает с ростом I.

Сопротивление можно понимать как наклон линии, заданный тангенсом угла. Как известно, тангенс определяется, как отношение между противоположным и соседним сторонами, и, в случае, когда сопротивления омические, может быть рассчитан по формуле: R = U / I.

Чтобы помочь запомнить формулу, можно использовать треугольник с одной горизонтальной стороной и вершиной вверху, как пирамиду. Это иногда называют законом треугольника Ома. В верхнем его углу находится буква V, в левом углу — буква I, а в правом нижнем углу — R.

Обратите внимание! Чтобы использовать треугольник, прикрыть неизвестный параметр, а затем, рассчитать его из двух других. Если они находятся на одной линии, они умножаются, но если одна находится над другой, их следует разделить. Другими словами, если необходимо рассчитать I, напряжение делится на сопротивление, то есть V / R.

Для полной замкнутой цепи

Закон Ома для полной цепи определение — ЭДС электрического элемента аккумулятора или источника — это общая работа, выполненная внутри и снаружи элемента для переноса электрических зарядов в электроцепи. Если обозначим ЭДС аккумулятора через E (B), суммарная сила тока для полной цепи I (А), внешнее сопротивление R (Ом) и внутреннее сопротивление ячейки r по (Ом).

Тогда: E = I*R + I*r

Это выражение известно, как закон Ома для замкнутого контура, где: I — интенсивность тока равна E общей электродвижущей силе деленной на (R + r) — общее сопротивление цепи.

Связь между ЭДС (E) электрической ячейки и напряжением на ее полюсах (V). На основании закона Ома для замкнутых цепей:

E = IR + I r, V = IR

ЭДС электрической ячейки больше, чем разность потенциалов между клеммами ее внешней цепи, когда цепь включена. Потому что внутреннее сопротивление ячейки потребляет работу для передачи I внутрь нее на основе соотношения E = V + I r и, следовательно, V Вам это будет интересно Особенности закона Ома для переменного тока

Для участка цепи

Законы Ома для участка цепи применяются также часто, как и для замкнутого контура. Разница в том, что при расчете учитывается не ЭДС, а только разность потенциалов. Такой участок называется однородным. В этом случае существует особый случай, который позволяет рассчитать характеристики электрической цепи на каждом из ее элементов.

V — разность напряжений или потенциалов. Измеряется вольтметром при параллельном подключении щупов к клеммам любого элемента (сопротивления). Результирующее значение V всегда меньше, чем ЭДС.

Для переменного тока

Общим термином для сопротивления переменного I является полное сопротивление и обозначается символом Z. Треугольник используется точно также, как закон Ома в DC, за исключением того, что теперь используют сопротивление Z. Следует отметить, что при измерении переменного напряжения или тока измеритель будет показывать только правильные значения в ограниченном диапазоне частот. Обычно это справедливо для постоянного I до 400 Гц.

Для цепей переменного тока, в которых напряжение и I находятся в фазе, может использоваться круговая диаграмма. В случае цепей переменного тока напряжение связано с I с помощью константы пропорциональности Z (импеданса) и константы пропорциональности R для чисто резистивных цепей, где (Z = R).

V = IZ и V = IR (для чисто резистивных цепей)

Где Z = √ [R 2 + X 2]

Импеданс Z — это полное сопротивление цепей к переменному току. Он состоит из реальной части (сопротивления) и мнимой части (реактивности).

В интегральной форме

Наиболее часто в электротехнике используют омическое соотношение в интегральной форме. Если рассмотреть часть проводника, приняв для простоты, что он имеет цилиндрическую форму, с площадью поперечного сечения S, к концам которого приложена разность потенциалов Δ φ = φ 1- φ 2, то внутри проводника будет действовать электрополе с плотностью тока j = σ*Е в соответствии с Законом Ома. Если предположить, что I будет равномерен по площади сечения провода, тогда:

Если поле Е в проводнике однородно, вектор Е будет направляться вдоль оси Ох, в этом случае напряжённость поля будет взаимосвязана с потенциалом формулой

I = σ*S*dφ/dx, поэтому

Интегрируя данное выражение для всего участка провода, получится:

I* ∫ dx/dφ = φ1 — φ2

Выражение, стоящее в левой части является сопротивлением проводника R, таким образом интегральная форма Закона Ома:

I *R = φ1, φ2 = V , где:

Для проводника с формой цилиндра, где S постоянная величина R = L/(σ *S) = ρ* L/S,

где L — длина проводника, а ρ = 1/σ — удельное сопротивление.

Неоднородного участка цепи

Однако существуют компоненты электрических цепей, которые не подчиняются закону Ома, то есть их взаимосвязь между током и напряжением является нелинейной или неомической. Например, pn-переходный диод. В нем I не увеличивается линейно с приложенным напряжением для диода. Можно определить значение тока (I) для данного значения приложенного напряжения (V) по кривой, но не по закону Ома, поскольку значение «сопротивления» не является постоянной величиной.

Кроме того, I значительно увеличивается, только если приложенное напряжение положительное, а не отрицательное. Соотношение V/I для некоторой точки вдоль нелинейной кривой иногда называют статическим, хордовым или постоянным сопротивлением. Значение общего V над общим I изменяется в зависимости от конкретной точки вдоль нелинейной кривой.

Это означает, что «сопротивление постоянному току» V/I в некоторой точке кривой не совпадает с тем, которое было бы определено путем подачи переменного сигнала, имеющего пиковую амплитуду V вольт или I ампер с центром в той же точке вдоль кривой. Однако в некоторых применениях с диодами сигнал переменного тока, подаваемый на устройство, мал, и можно анализировать схему с точки зрения динамики, мало сигнальное, или инкрементное сопротивления, определяемое как сопротивление наклона кривой V-I при среднем значении напряжения. Для достаточно малых сигналов динамическое сопротивление позволяет рассчитать закон малого сопротивления Ома как приблизительно одно по наклону линии, проведенной по касательной к кривой в рабочей точке постоянного тока.

Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:

I = U/ R = φ1 — φ2 + E/ R, где:

φ1 — φ2 — разница потенциалов на конечных точках рассматриваемого участка сети,

R — общее сопротивление нелинейного участка цепи.

Сила тока по закону Ома

Альтернативные утверждения закона Ома заключаются в том, что I в проводнике равен разности потенциалов V на проводнике, деленной на сопротивление проводника, или просто I = V / R, и что разность потенциалов на проводнике равна произведению тока в проводнике и его сопротивления, V = IR.

В цепи, в которой разность потенциалов или напряжение постоянны, I может быть уменьшен, путем добавления большего сопротивления или увеличен путем удаления некоторого сопротивления. Закон Ома также может быть выражен в терминах электродвижущая сила, или напряжение, E — источника электрической энергии, такой как батарея, например, I = Е / R.

С изменениями закон Ома также применяется к цепям переменного тока, в которых соотношение между напряжением и током более сложное, чем для постоянных I. Именно потому, что I меняется, возникают другие формы замыкания тока, называемые реактивным сопротивлением. Сочетание сопротивления и реактивного сопротивления называется импеданс, Z. Когда импеданс, эквивалентный отношению напряжения к току, в цепи переменного тока является постоянным, обычное явление, применим закон Ома, например, V/I = Z.

Закон Ома используется во всех отраслях электротехники для расчета значения резисторов, требуемых в цепях, и также может использоваться для определения тока, протекающего в цепи, где напряжение можно легко измерить через известный резистор. Таким образом, он применяется в огромном количестве вычислений во всех формах электрических и электронных схем — фактически везде, где течет ток.

Читать еще:  Fm антенна своими руками

Закон Ома простыми словами — формулировка для участка и полной цепи

Закон Ома является одним из фундаментальных законов электродинамики, который определяет взаимосвязь между напряжением, сопротивлением и силой тока. Его важно знать и понимать. Понятное объяснение вы найдёте в статье.

Закон Ома официально и абсолютно оправдано можно отнести к ряду основополагающих в физике по нескольким признакам. Данный закон объясняют в школе на базовом уровне, а после, более углубленно, в учреждениях, специализирующихся на изучении технических аспектов технологий.

Закон Ома – определение

Впервые данный закон был официально зафиксирован и сформулирован в восемнадцатом веке, благодаря сделанному сейчас уже широко известным всем Георгом Симоном Омом открытию. Благодаря данному закону получило грамотное и исчерпывающее объяснение наличие количественной связи между тремя фигурирующими в определении параметрами. Зависимость рассматривается как пропорциональная. Когда данное явление только было выявлено, закон несколько раз формулировали. В итоге сейчас всем известно данное определение: «величина тока на участке цепи прямо пропорциональна напряжению, приложенному к этому участку, и обратно пропорциональна его сопротивлению».

Для лучшего понимания разделим определение на две части и разберём отдельно более понятным языком смысл каждой.

  1. Первая часть определения указывает на то, что если на определенной отрезке цепи происходит количественный скачок напряжения, то величина тока также увеличивается на данном участке. Важно упомянуть, что становится больше и величина тока на заданном участке цепи.
  2. Концовка определения расшифровывается также просто. Выше напряжение – меньше сила тока.

Закон Ома – формула

Рисунок наглядно демонстрирует связь фигурирующих в понятии «участников». Таким образом, вытекают простые выводы:

1. При данных условиях: на конкретном отрезке увеличивается напряжение, но при том сопротивление остаётся прежним, ток резко возрастает;

2. Иная ситуация: наоборот, изменяется сопротивление, а точнее возрастает, при том что уровень напряжения не меняется вовсе, тока становится меньше.

В итоге в законе Ома участвуют всего три величины.

Готовая формула выглядит так:

Фигурируют и другие две переменные, их также можно вычислить, при условии, что другие два значения известны. Видоизменив формулу, получим:

Формула сопротивления R = U/I
Формула напряжения U = I × R
Формула силы тока I = U/R

Важно!

На начальном этапе, когда составлять формулы ещё сложно, можно воспользоваться небольшой шпаргалкой.

На треугольнике просто нужно закрыть то значение, которое необходимо найти.

Закон Ома для участка цепи

Итоговая формула не видоизменяется вовсе. Обычно сопротивление в данном законе является явной характеристикой проводника, потому что это значение не постоянная величина: в зависимости от материала и других параметров число может увеличиваться или уменьшаться. Закон применим как при расчёте с использованием металлов, так и растворов электролитов, однако существует важный нюанс: в цепи не должно быть реального источника тока, или же источник должен быть идеальным, то есть он не должен создавать дополнительное сопротивление.

С ЭДС

Обобщённый закон Ома формулируется так:

Также формулу можно выразить через проводимость:

I = (Uab + E) × G, как понятно, G – проводимость участка электрической цепи. Эти формулы можно использовать, если сохраняются условия, зафиксированные на рисунке.

Без ЭДС

Для начала определим, что положительное направление – это то, что слева направо. Только в этом случае напряжение на участке будет равняться разности потенциалов.

Если сохраняется условие и потенциал конечный меньше потенциала начального, то напряжение будет больше нуля. Значит, как и полагается, направление линий напряженности в проводнике будет от начала к концу, следовательно, направление тока будет идентичным. Именно такое направление тока принято считать положительным, I > O. Данный вариант самый простой для расчётов. Формула действительна с любыми числами.

Закон Ома для полной (замкнутой) цепи

При данной вариации закона выявляется значение тока при реальных условиях, то есть в настоящей полной цепи. Важно учитывать то, что получившееся в результате расчетов число зависит от нескольких параметров, а не только от сопротивления нагрузки.

Сопротивление нагрузки – внешнее сопротивление, а сопротивление самого источника тока – внутреннее сопротивление (обозначается маленькой r).

Вывод формулы закона Ома для замкнутой цепи

Если к цепи подключено напряжение и в цепи замечено напряжение (ток), то, чтобы поддержать его во внешней цепи, необходимо создать условия, при которых между её концами возникнет разность потенциалов. Это число будет равняться I × R. Однако важно помнить о том, что вышеупомянутый ток будет и во внутренней цепи и его также необходимо поддерживать, поэтому нужно создать разность потенциалов между концами сопротивления r. Эта разность равняется I × r.

Чтобы поддержать ток в цепи, электродвижущая сила (ЭДС) аккумулятора должна иметь величину:

Эта формула показывает, что электродвижущая сила в цепи равна сумме внешнего и внутреннего падений напряжения. Вынося I за скобки, получим:

Две последние формулы выражают закона Ома для полной цепи.

Закон Ома в дифференциальной форме

Закон можно представить таким образом, чтобы он не был привязан к размерам проводника. Для этого выделим участок проводника Δl, на концах которой расположены ф1 и ф2. Среднюю площадь проводника обозначают ΔS , а плотность тока j, при таких условиях сила тока будет равняться:

I = jΔS = (ф1- ф2) / R = -(((ф1 — ф2)ΔS) / pΔl , отсюда следует, что j = -y × (Δф/Δl)

При условии, что Δl будет равен 0, то, взяв предел отношения:

окончательное выражение будет выглядеть так:

Данное выражение закона находит силу тока в произвольной точке проводника в зависимости от его свойств и электрического состояния.

Закон Ома в интегральной форме

В данной интерпретации закона не содержится в условиях ЭДС, то есть формула выглядит так:

Чтобы найти значение для однородного линейного проводника, выразим R через p и получим:

R = p (l/S), где за р принимаем удельное объёмное сопротивление.

Линией тока принято называть кривую, в каждой точке которой вектор плотности тока направлен по касательной к этой кривой. При таких условиях вектор плотности находится из отношения J = jt, где t – это единичный вектор касательной к линии тока.

Для лучшего понимания предположим, что удельное сопротивление, а также напряженность поля движущих сил на поперечном сечении проводника однородны. При таком условии Е однородна, а значит, и j также однородная величина. Примем произвольное значение поперечного сечения цепи S, тогда pl/s = E. Получившееся равенство умножим на dl. Тогда Edl = (Е эл.ст.+Е стор.) dl = Е эл.ст. dl + Е стор. dl = -dф + dE. Отсюда получим (pI/S) dl = -dф + dE. Возьмём в учёт, что p/s dl = dR и запишем закон Ома в интегральной форме:

Закон Ома в комплексной форме

Чтобы провести анализ электрических цепей синусоидального тока, комфортнее использовать закон Ома в комплексной форме. Для лучшего понимания введем основное понятие, фигурирующее в данной интерпретации закона: синусоидальный ток – это линейные цепи с установившимся режимом работы, после того, как переходные процессы в них завершены, уровень напряжения резко уменьшается на конкретной дистанции, токи в ветвях и ЭДС источников являются синусоидальными функциями времени. В противном случае, когда данные параметры не соблюдаются, закон не может быть применим. Чем отличается эта форма от обычной? Ответ прост: токи, сопротивление и ЭДС фиксируются как комплексные числа. Это обусловлено тем, что существуют как активные так и реактивные значения напряжений, токов и сопротивлений, а в результате этого требуется внесение определенных коррективов.

Вместо активного сопротивления используется полное, то есть комплексное сопротивление цепи Z. Падение напряжения, ток и ЭДС тоже превращаются в комплексные величины. При реальных расчетах лучше и удобнее применять действующие значения. Итак, закон в комплексной форме выглядит так:

В данной формуле Z – комплексное сопротивление, Y – комплексная проводимость.

Чтобы выявить эти величины, выведены формулы. Пропустим шаги их создания и приведем готовые формулы:

Z = ze = z cosф + jz sinф = r + jx

Y = 1/ ze = ye = y cos ф — jy sin ф = g + jb

Закон Ома для переменного тока

После того как Фарадей открыл электромагнитную индукцию, стали активно использовать генераторы сперва постоянного, а после и переменного тока.

Используется уже известная формула:

Полное сопротивление тока – это совокупность активного, а также индуктивного и емкостного сопротивлений. Проще говоря, ток в цепи переменного тока зависит от многих параметров, в том числе от величины ёмкости и индуктивности. Полное сопротивление вычисляется по формуле.

Полное сопротивление можно изобразить как гипотенузу прямоугольного треугольника, катетами которого является активное и индуктивное сопротивление.

Итак, формула амплитудного значения силы тока будет выглядеть так:

В такой цепи колебания тока и напряжения разные по фазе, а разность фаз зависит от индуктивности катушки и ёмкости конденсатора:

I = Im sin (ωt + ф)

Закон Ома для постоянного тока

В данном случае частота будет равняться нулевому значению, поэтому остальные показатели также будут нулевыми соответственно, в то время как значение ёмкости достигнет бесконечности. Цепь разорвётся. Поэтому отсюда вытекает логичный вывод: реактивное сопротивление элементов в цепях постоянного напряжения отсутствует.

Закон Ома для однородного участка цепи

Формула выглядит уже известным образом:

В данном случае главной характеристикой проводника остаётся сопротивление. От того, как выглядит проводник, зависит количество узлов кристаллической решётки и атомов примесей. Поэтому электроны могут замедляться или ускоряться.

Сопротивление будет зависеть от вида проводника, а именно от его сечения, материала и длины:

Закон Ома для неоднородного участка цепи

При решении задачи становится понятным, что для того, чтобы поддерживался стабильный ток в замкнутой цепи, нужны силы совершенной другой природы, а не кулоновские. В этом случае можно заметить такую закономерность: заряды, которые никак не соприкасаются друг с другом, выступают в двух ролях одновременно, то есть они являются силами электрического поля и силами иного вида – сторонними в это же время. Участок, на котором замечена данная закономерность, называется неоднородным.

Формула принимает вид:

Закон Ома в данном подразделе был сформулирован таким образом: сила тока прямо пропорциональна напряжению на данном участке и обратно пропорциональна его полному сопротивлению.

Итак, готовая формула:

I = U12/R, где U12

Закон Ома для магнитной цепи

В каждом электромагните совмещены несколько важных элементов: стальной сердечник и катушка. По последней протекает ток. При совмещении нескольких участков образуется магнитная цепь.

При кольцевом магнитопроводе все поле находится внутри кольца. Тогда поток в магнитопроводе равен:

Ф = Вср S = μHср S

Формула закона для магнитной цепи:

Задачи с решениями на закон Ома

Задача №1

Нихромовая проволока длиной 120 м и площадью сечения 0,5 мм включена в цепь с напряжением 127 В. Определить силу тока в проволоке.

Читать еще:  Как сделать вытяжку в гараже

Дано:

  • l = 120 м,
  • S = 0,5 мм,
  • U = 127 В,
  • p = 1,1 Ом*мм 2 /м.

Найти: I — ?

Решение:

  • R = p * l / S,
  • R = 1,1 Ом*мм 2 /м * 120 м : 0,5 мм = 264 Ом,
  • I = 127 В : 264 Ом = 0,48 А.

Ответ: I = 0,48 Ом

Задача №2

Нихромовая проволока длиной 120 м и площадью сечения 0,5 мм включена в цепь с напряжением 220 В. Определить силу тока в проволоке.

Дано:

  • l = 120 м,
  • S = 0,5 мм,
  • U = 220 В,
  • p = 1,1 Ом*мм 2 /м.

Найти: I — ?

Решение:

  • R = p * l / S,
  • R = 1,1 Ом*мм 2 /м * 120 м : 0,5 мм = 264 Ом,
  • I = 220 В : 264 Ом = 0,83 А.

Ответ: I = 0,83 Ом

Задача №3

Дано:

Найти: I — ?

Решение:

  • R2 и R3 соединены параллельно R2 = R3, R2.3 = R2 / 2 = 2 Ом, составим эквивалентную схему:

Электродвижущая сила. Закон Ома для полной цепи

Урок 73. Физика 10 класс

Конспект урока “Электродвижущая сила. Закон Ома для полной цепи”

Как вы знаете, для существования электрического тока, необходимо наличие электрического поля. Причем, это поле должно постоянно поддерживаться неким источником тока. Сегодня мы поговорим об основной характеристике источника тока, которая называется электродвижущей силой (или, сокращенно, ЭДС). Для начала рассмотрим простой опыт: возьмем два противоположно заряженных шарика и соединим их проводником. В этом случае, в проводнике возникнет электрический ток, но он будет очень кратковременным. Дело в том, что очень скоро произойдет перераспределение заряда, и потенциалы шариков уравняются. Значит, перестанет существовать электрическое поле.

Из этого можно сделать вывод, что для поддержания постоянного тока необходимо наличие неких сил неэлектрического происхождения, чтобы эти силы могли перемещать заряды против поля. Такие силы называются сторонними силами. То есть, сторонние силы — это любые силы, которые действуют на электрические заряды, но при этом не являются силами электрического происхождения. Например, это могут быть силы, действующие на заряды со стороны магнитного поля — это используется в генераторах.

В батареях или аккумуляторах работу по разделению электрических зарядов выполняют химические реакции.

Еще один аргумент, который мы можем привести — это то, что работа кулоновских сил при перемещении заряда по замкнутому контуру, равна нулю. А это значит, что какие-то другие силы должны обеспечивать ненулевую работу для поддержания разности потенциалов.

Устройство для поддержания электрического тока, называется источником тока. В любом источнике тока сторонние силы действуют на заряды, совершая работу против кулоновских сил. Стало быть, характеристикой источника должна быть величина, не зависящая от величины заряда. Эта величина называется электродвижущей силой. Электродвижущая сила равна отношению работы сторонних сил при перемещении заряда по замкнутому контуру, к величине этого заряда:

Из формулы видно, что электродвижущая сила, как и напряжение, измеряется в вольтах:

Теперь, когда мы познакомились с ЭДС, мы можем перейти к изучению закона Ома для полной цепи. Полной цепью называется замкнутая цепь, включающая в себя источник тока. Для удобства, мы рассмотрим простейшую электрическую цепь, состоящую только из источника тока, резистора и соединительных проводов:

Как мы уже сказали, источник тока характеризуется ЭДС. Тем не менее, любой источник тока обладает определенным сопротивлением, которое называется внутренним сопротивлением. Закон Ома для полной цепи представляет собой связь между ЭДС, внутренним и внешним сопротивлением и силой тока в цепи. Для того, чтобы установить эту связь, воспользуемся законом сохранения энергии. Запишем, что работа сторонних сил равна произведению ЭДС источника и величины заряда:

Как вы знаете, каждый участок цепи выделяет то или иное количество теплоты. По закону Джоуля-Ленца, это количество теплоты вычисляется по формуле:

Исходя из закона сохранения энергии, мы можем приравнять это количество теплоты к работе сторонних сил:

Закон Ома для полной цепи звучит так: сила тока в замкнутой цепи равна отношению ЭДС источника к полному сопротивлению цепи:

Вывести закон Ома для полной цепи можно, рассуждая несколько иначе. Как мы знаем, при последовательном соединении полное напряжение цепи равно сумме падений напряжений на всех участках цепи:

Мы видим, что произведение силы тока и сопротивления резистора есть не что иное, как напряжение на этом резисторе. А произведение силы тока и внутреннего сопротивления — это падение напряжения на самом источнике:

Надо сказать, что внутреннее сопротивление источника во многих случаях пренебрежимо мало по сравнению с сопротивлением внешней части цепи. В этом случае, мы можем считать, что напряжение на зажимах источника примерно равно ЭДС (то есть падение напряжения на источнике считается приблизительно равным нулю):

Тем не менее, именно внутренним сопротивлением определяется сила тока в цепи при коротком замыкании. Напомним, что при коротком замыкании, внешнее сопротивление становится почти нулевым, поэтому в цепи резко возрастает сила тока:

Рассмотрим теперь цепь, содержащую несколько последовательно соединенных источников тока.

В этом случае, ЭДС всей цепи равна алгебраической сумме ЭДС отдельных источников.

В таких случаях необходимо выбрать так называемое «направление обхода тока». Это направление выбирается условно (в нашем случае — против часовой стрелки). Тогда, ,поскольку они стремятся вызвать ток в направлении обхода.

А,поскольку они стремятся вызвать ток в направлении, противоположном направлению обхода. Отрицательная ЭДС означает, что сторонние силы внутри источника совершают отрицательную работу. Таким образом, ЭДС нашей цепи будет равна:

В соответствии с правилами последовательного соединения, суммарное сопротивление цепи равно сумме внешнего сопротивления и внутренних сопротивлений всех источников тока:

Пример решения задачи.

Задача. К источнику тока с внутренним сопротивлением 1 Ом подключили резистор с сопротивлением 15 Ом. После этого в цепь включили амперметр, который показал, что сила тока равна 5 А. Найдите работу сторонних сил внутри источника, совершенную за 2 минуты.

Закон Ома для полной цепи

Если закон Ома для участка цепи знают почти все, то закон Ома для полной цепи вызывает затруднения у школьников и студентов. Оказывается, все до боли просто!

Идеальный источник ЭДС

Давайте вспомним, что такое ЭДС. ЭДС – это что-то такое, что создает электрический ток. Если к такому источнику напряжения подцепить любую нагрузку (хоть миллиард галогенных ламп, включенных параллельно), то он все равно будет выдавать такое же напряжение, какое-бы он выдавал, если бы мы вообще не цепляли никакую нагрузку.

Короче говоря, какая бы сила тока не проходила через цепь резистора, напряжение на концах источника ЭДС будет всегда одно и тоже. Такой источник ЭДС называют идеальным источником ЭДС.

Но как вы знаете, в нашем мире нет ничего идеального. То есть если бы в нашем аккумуляторе был идеальный источник ЭДС, тогда бы напряжение на клеммах аккумулятора никогда бы не проседало. Но оно проседает и тем больше, чем больше силы тока потребляет нагрузка. Что-то здесь не так. Но почему так происходит?

Внутреннее сопротивление источника ЭДС

Дело все в том, что в аккумуляторе “спрятано” сопротивление, которое условно говоря, цепляется последовательно с источником ЭДС аккумулятора. Называется оно внутренним сопротивлением или выходным сопротивлением. Обозначается маленькой буковкой “r “.

Выглядит все это в аккумуляторе примерно вот так:

Итак, что у нас получается в чистом виде?

Лампочка – это нагрузка, которая обладает сопротивлением. Значит, еще больше упрощаем схему и получаем:

Имеем идеальный источник ЭДС, внутреннее сопротивление r и сопротивление нагрузки R. Вспоминаем статью делитель напряжения. Там говорится, что напряжение источника ЭДС равняется сумме падений напряжения на каждом сопротивлении.

На резисторе R падает напряжение UR , а на внутреннем резисторе r падает напряжение Ur .

Теперь вспоминаем статью делитель тока. Сила тока, протекающая через последовательно соединенные сопротивления везде одинакова.

Вспоминаем алгебру за 5-ый класс и записываем все то, о чем мы с вами сейчас говорили. Из закона Ома для участка цепи получаем, что

Закон Ома для полной цепи

Итак, последнее выражение носит название “закон Ома для полной цепи”

Е – ЭДС источника питания, В

R – сопротивление всех внешних элементов в цепи, Ом

I – сила ток в цепи, А

r – внутреннее сопротивление источника питания, Ом

Просадка напряжения

Итак, знакомьтесь, автомобильный аккумулятор!

Для дальнейшего его использования, припаяем к нему два провода: красный на плюс, черный на минус

Наш подопечный готов к бою.

Теперь берем автомобильную лампочку-галогенку и тоже припаяем к ней два проводка с крокодилами. Я припаялся к клеммам на “ближний” свет.

Первым делом давайте замеряем напряжение на клеммах аккумулятора

12,09 вольт. Вполне нормально, так как наш аккумулятор выдает именно 12 вольт. Забегу чуток вперед и скажу, что сейчас мы замерили именно ЭДС.

Подключаем галогенную лампу к аккумулятору и снова замеряем напряжение:

Видели да? Напряжение на клеммах аккумулятора просело до 11,79 Вольт!

А давайте замеряем, сколько потребляет тока наша лампа в Амперах. Для этого составляем вот такую схемку:

Желтый мультиметр у нас будет замерять напряжение, а красный мультиметр – силу тока. Как замерять с помощью мультиметра силу тока и напряжение, можно прочитать в этой статье.

Смотрим на показания приборов:

Как мы видим, наша лампа потребляет 4,35 Ампер. Напряжение просело до 11,79 Вольт.

Давайте вместо галогенной лампы поставим простую лампочку накаливания на 12 Вольт от мотоцикла

Лампочка потребляет силу тока в 0,69 Ампер. Напряжение просело до 12 Вольт ровно.

Какие выводы можно сделать? Чем больше нагрузка потребляет силу тока, тем больше просаживается напряжение на аккумуляторе.

Как найти внутреннее сопротивление источника ЭДС

Давайте снова вернемся к этой фотографии

Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае ЭДС=12,09 Вольт.

Как только мы подсоединили нагрузку, то у нас сразу же упало напряжение на внутреннем сопротивлении и на нагрузке, в данном случае на лампочке:

Сейчас на нагрузке (на галогенке) у нас упало напряжение UR=11,79 Вольт, следовательно, на внутреннем сопротивлении падение напряжения составило Ur=E-UR=12,09-11,79=0,3 Вольта. Сила тока в цепи равняется I=4,35 Ампер. Как я уже сказал, ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи высчитываем, чему у нас будет равняться внутреннее сопротивление r

Вывод

Внутреннее сопротивление бывает не только у различных химических источников напряжения. Внутренним сопротивлением также обладают и различные измерительные приборы. Это в основном вольтметры и осциллографы.

Читать еще:  Как выбрать люстру

Дело все в том, что если подключить нагрузку R, сопротивление у которой будет меньше или даже равно r, то у нас очень сильно просядет напряжение. Это можно увидеть, если замкнуть клеммы аккумулятора толстым медным проводом и замерять в это время напряжение на клеммах. Но я не рекомендую этого делать ни в коем случае! Поэтому, чем высокоомнее нагрузка (ну то есть чем выше сопротивление нагрузки R ), тем меньшее влияние оказывает эта нагрузка на источник электрической энергии.

Вольтметр и осциллограф при замере напряжения тоже чуть-чуть просаживают напряжение замеряемого источника напряжения, потому как являются нагрузкой с большим сопротивлением. Именно поэтому самый точный вольтметр и осциллограф имеют ну очень большое сопротивление между своими щупами.

ЭДС. Закон Ома для полной цепи

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: электродвижущая сила, внутреннее сопротивление источника тока, закон Ома для полной электрической цепи.

До сих пор при изучении электрического тока мы рассматривали направленное движение свободных зарядов во внешней цепи, то есть в проводниках, подсоединённых к клеммам источника тока.

Как мы знаем, положительный заряд :

• уходит во внешнюю цепь с положительной клеммы источника;

• перемещается во внешней цепи под действием стационарного электрического поля, создаваемого другими движущимися зарядами;

• приходит на отрицательную клемму источника, завершая свой путь во внешней цепи.

Теперь нашему положительному заряду нужно замкнуть свою траекторию и вернуться на положительную клемму. Для этого ему требуется преодолеть заключительный отрезок пути — внутри источника тока от отрицательной клеммы к положительной. Но вдумайтесь: идти туда ему совсем не хочется! Отрицательная клемма притягивает его к себе, положительная клемма его от себя отталкивает, и в результате на наш заряд внутри источника действует электрическая сила , направленная против движения заряда (т.е. против направления тока).

Сторонняя сила

Тем не менее, ток по цепи идёт; стало быть, имеется сила, «протаскивающая» заряд сквозь источник вопреки противодействию электрического поля клемм (рис. 1 ).

Рис. 1. Сторонняя сила

Эта сила называется сторонней силой; именно благодаря ей и функционирует источник тока. Сторонняя сила не имеет отношения к стационарному электрическому полю — у неё, как говорят, неэлектрическое происхождение; в батарейках, например, она возникает благодаря протеканию соответствующих химических реакций.

Обозначим через работу сторонней силы по перемещению положительного заряда q внутри источника тока от отрицательной клеммы к положительной. Эта работа положительна, так как направление сторонней силы совпадает с направлением перемещения заряда. Работа сторонней силы называется также работой источника тока.

Во внешней цепи сторонняя сила отсутствует, так что работа сторонней силы по перемещению заряда во внешней цепи равна нулю. Поэтому работа сторонней силы по перемещению заряда вокруг всей цепи сводится к работе по перемещению этого заряда только лишь внутри источника тока. Таким образом, — это также работа сторонней силы по перемещению заряда по всей цепи.

Мы видим, что сторонняя сила является непотенциальной — её работа при перемещении заряда по замкнутому пути не равна нулю. Именно эта непотенциальность и обеспечивает циркулирование электрического тока; потенциальное электрическое поле, как мы уже говорили ранее, не может поддерживать постоянный ток.

Опыт показывает, что работа прямо пропорциональна перемещаемому заряду . Поэтому отношение уже не зависит от заряда и является количественной характеристикой источника тока. Это отношение обозначается :

Данная величина называется электродвижущей силой (ЭДС) источника тока. Как видим, ЭДС измеряется в вольтах (В), поэтому название «электродвижущая сила» является крайне неудачным. Но оно давно укоренилось, так что приходится смириться.

Когда вы видите надпись на батарейке: «1,5 В», то знайте, что это именно ЭДС. Равна ли эта величина напряжению, которое создаёт батарейка во внешней цепи? Оказывается, нет! Сейчас мы поймём, почему.

Закон Ома для полной цепи

Любой источник тока обладает своим сопротивлением , которое называется внутренним сопротивлением этого источника. Таким образом, источник тока имеет две важных характеристики: ЭДС и внутреннее сопротивление.

Пусть источник тока с ЭДС, равной , и внутренним сопротивлением подключён к резистору (который в данном случае называется внешним резистором, или внешней нагрузкой, или полезной нагрузкой). Всё это вместе называется полной цепью (рис. 2 ).

Рис. 2. Полная цепь

Наша задача — найти силу тока в цепи и напряжение на резисторе .

За время по цепи проходит заряд . Согласно формуле (1) источник тока совершает при этом работу:

Так как сила тока постоянна, работа источника целиком превращается в теплоту, которая выделяется на сопротивлениях и . Данное количество теплоты определяется законом Джоуля–Ленца:

Итак, , и мы приравниваем правые части формул (2) и (3) :

После сокращения на получаем:

Вот мы и нашли ток в цепи:

Формула (4) называется законом Ома для полной цепи.

Если соединить клеммы источника проводом пренебрежимо малого сопротивления , то получится короткое замыкание. Через источник при этом потечёт максимальный ток — ток короткого замыкания:

Из-за малости внутреннего сопротивления ток короткого замыкания может быть весьма большим. Например, пальчиковая батарейка разогревается при этом так, что обжигает руки.

Зная силу тока (формула (4) ), мы можем найти напряжение на резисторе с помощью закона Ома для участка цепи:

Это напряжение является разностью потенциалов между точками и (рис. 2 ). Потенциал точки равен потенциалу положительной клеммы источника; потенциал точки равен потенциалу отрицательной клеммы. Поэтому напряжение (5) называется также напряжением на клеммах источника.

Мы видим из формулы (5) , что в реальной цепи будет — ведь умножается на дробь, меньшую единицы. Но есть два случая, когда .

1. Идеальный источник тока. Так называется источник с нулевым внутренним сопротивлением. При формула (5) даёт .

2. Разомкнутая цепь. Рассмотрим источник тока сам по себе, вне электрической цепи. В этом случае можно считать, что внешнее сопротивление бесконечно велико: . Тогда величина неотличима от , и формула (5) снова даёт нам .

Смысл этого результата прост: если источник не подключён к цепи, то вольтметр, подсоединённый к полюсам источника, покажет его ЭДС.

КПД электрической цепи

Нетрудно понять, почему резистор называется полезной нагрузкой. Представьте себе, что это лампочка. Теплота, выделяющаяся на лампочке, является полезной, так как благодаря этой теплоте лампочка выполняет своё предназначение — даёт свет.

Количество теплоты, выделяющееся на полезной нагрузке за время , обозначим .

Если сила тока в цепи равна , то

Некоторое количество теплоты выделяется также на источнике тока:

Полное количество теплоты, которое выделяется в цепи, равно:

КПД электрической цепи — это отношение полезного тепла к полному:

КПД цепи равен единице лишь в том случае, если источник тока идеальный .

Закон Ома для неоднородного участка

Простой закон Ома справедлив для так называемого однородного участка цепи — то есть участка, на котором нет источников тока. Сейчас мы получим более общие соотношения, из которых следует как закон Ома для однородного участка, так и полученный выше закон Ома для полной цепи.

Участок цепи называется неоднородным, если на нём имеется источник тока. Иными словами, неоднородный участок — это участок с ЭДС.

На рис. 3 и источник тока. ЭДС источника равна , его внутреннее сопротивление считаем равным нулю (усли внутреннее сопротивление источника равно , можно просто заменить резистор на резистор ).

Рис. 3. ЭДС «помогает» току:

Сила тока на участке равна , ток течёт от точки к точке . Этот ток не обязательно вызван одним лишь источником . Рассматриваемый участок, как правило, входит в состав некоторой цепи (не изображённой на рисунке), а в этой цепи могут присутствовать и другие источники тока. Поэтому ток является результатом совокупного действия всех источников, имеющихся в цепи.

Пусть потенциалы точек и равны соответственно и . Подчеркнём ещё раз, что речь идёт о потенциале стационарного электрического поля, порождённого действием всех источников цепи — не только источника, принадлежащего данному участку, но и, возможно, имеющихся вне этого участка.

Напряжение на нашем участке равно: . За время через участок проходит заряд , при этом стационарное электрическое поле совершает работу:

Кроме того, положительную работу совершает источник тока (ведь заряд прошёл сквозь него!):

Сила тока постоянна, поэтому суммарная работа по продвижению заряда , совершаемая на участке стационарным элетрическим полем и сторонними силами источника, целиком превращается в тепло: .

Подставляем сюда выражения для , и закон Джоуля–Ленца:

Сокращая на , получаем закон Ома для неоднородного участка цепи:

или, что то же самое:

Обратите внимание: перед стоит знак «плюс». Причину этого мы уже указывали — источник тока в данном случае совершает положительную работу, «протаскивая» внутри себя заряд от отрицательной клеммы к положительной. Попросту говоря, источник «помогает» току протекать от точки к точке .

Отметим два следствия выведенных формул (6) и (7) .

1. Если участок однородный, то . Тогда из формулы (6) получаем — закон Ома для однородного участка цепи.

2. Предположим, что источник тока обладает внутренним сопротивлением . Это, как мы уже упоминали, равносильно замене на :

Теперь замкнём наш участок, соединив точки и . Получим рассмотренную выше полную цепь. При этом окажется, что и предыдущая формула превратится в закон Ома для полной цепи:

Таким образом, закон Ома для однородного участка и закон Ома для полной цепи оба вытекают из закона Ома для неоднородного участка.

Может быть и другой случай подключения, когда источник «мешает» току идти по участку. Такая ситуация изображена на рис. 4 . Здесь ток, идущий от к , направлен против действия сторонних сил источника.

Рис. 4. ЭДС «мешает» току:

Как такое возможно? Очень просто: другие источники, имеющиеся в цепи вне рассматриваемого участка, «пересиливают» источник на участке и вынуждают ток течь против . Именно так происходит, когда вы ставите телефон на зарядку: подключённый к розетке адаптер вызывает движение зарядов против действия сторонних сил аккумулятора телефона, и аккумулятор тем самым заряжается!

Что изменится теперь в выводе наших формул? Только одно — работа сторонних сил станет отрицательной:

Тогда закон Ома для неоднородного участка примет вид:

где по-прежнему — напряжение на участке.

Давайте соберём вместе формулы (7) и (8) и запишем закон Ома для участка с ЭДС следующим образом:

Ток при этом течёт от точки к точке . Если направление тока совпадает с направлением сторонних сил, то перед ставится «плюс»; если же эти направления противоположны, то ставится «минус».

Ссылка на основную публикацию
Adblock
detector