Устройство компрессора холодильника
Centr86.ru

Ремонт бытовой техники

Устройство компрессора холодильника

Принцип работы компрессора холодильника

Мы привыкли, что если наша бытовая техника исправна – то нам даже не интересно, как она работает, мы не интересуемся ее устройством и принципами работы. А уж тем более никто из нас не проявляет интерес к тому, как устроен и работает компрессор холодильника – а зря. Ведь правильная работа и длительная эксплуатация напрямую зависят от знаний пользователя о принципах работы компрессора холодильника, что мы и рассмотрим в нашей статье.

Современные квартиры и дома обустроены холодильной техникой, работа которой основывается на компрессорах, что и интересует нас. Как все-таки устроен компрессор холодильника и из чего он состоит?

Давайте рассмотрим:

  • Компрессор – поршень приводит в действие хладагент, который находится в газообразном состоянии, плюс ко всему он же создаёт давление на отдельных участках;
  • Конденсатор – данная камера предназначена для отдачи тепла газообразным веществом в открытое пространство;
  • Испарительная камера – специальной ёмкости, куда жидкий газ попадает и впитывает тепло, поступившее из холодильной камеры;
  • Хладагент (фреон) – специальная химическая смесь, которая циркулирует по системе благодаря работе компрессора, может как отдавать, так и забирать тепло (Влияние фреона на организм человека – читаем здесь!);
  • Терморегулятор – прибор для поддержания нужной температуры согласно выбранного режима работы.

Как работает компрессор холодильника

Чтобы правильно понять, как работает компрессор холодильника, нужно знать, что это именно тот агрегат, который способен самостоятельно вырабатывать холод. Благодаря протекающим внутри холодильной системы процессам, возникает холод – тепло, полученное от хладагента, выводится в окружающее пространство. Самое распространенное в этом процессе вещество, которое используется, это – фреон, применяемый в холодильниках компрессорного типа.

Принцип работы компрессора холодильника основан на цикличности:

  • Фреон, попадая в камеру испарения, забирает весь теплый воздух из холодильника;
  • После хладагент поступает в компрессор и далее в конденсатор;
  • Двигаясь по системе спиралей в стенках холодильной камеры, фреон остывает, и принимает жидкое состояние;
  • После процесса охлаждения, хладагент поступает в испаритель, откуда, направляясь в трубку с большим диаметром, за счёт потери давления, становится газообразным. И после все повторяется.

Такой цикл не прекращается до тех пор, пока холодильник не выработает нужную температуру согласно заданному режиму.

Устройство компрессора

Однокамерные и двухкамерные холодильники

Внешне двухкамерные холодильники ничем не отличаются от агрегатов с одной камерой. Двухкамерные модели, выпускаемые ранее, имеют один испаритель на обе камеры. Отсюда, во время разморозки можно механически задеть испаритель, и из строя выйдет весь холодильник. В новых же двухкамерных шкафах имеются два отделения, в каждом из которых установлен испаритель. Камеры не соприкасаются друг с другом. Чаще всего такие холодильные агрегаты нам известны расположенной внизу морозилкой и верхним холодильным отсеком.

Несмотря на популярность моделей с одним мотором, два компрессора в устройстве тоже пользуются спросом. Разница лишь в том, что за каждой камерой закреплен компрессор. В быту гораздо чаще можно встретить двухкамерные холодильники, устройство которых позволяет нам выключить один компрессор в случае отсутствия необходимости в его работе, и, не нанося вреда работоспособности системы в целом, прекратить функционирование одной камеры.

Разновидность холодильников

Стоит обратить внимание на абсорбционные холодильники, которые испаряют свою рабочую смесь. Чаще всего для их работы используется аммиак. Хладагент циркулирует благодаря его растворению в водной среде. Далее полученная смесь направляется в систему и, после попадания в дефлегматор, распадается на две составляющие первоначального состояния. Цикл повторяется вновь, как только используемый аммиак превращается в жидкость после попадания в конденсатор.

Учитывая токсичность аммиака, в быту такие холодильники не применяются вовсе. К их использованию прибегают лишь в случае, когда нет возможности установить компрессорный агрегат.

Устройство компрессора холодильника

Работа бытового и промышленного холодильного оборудования напрямую зависит от циркуляции хладагента, отвечает за этот процесс компрессорная установка. По сути, это самый важный элемент конструкции, без которого домашний холодильник заинтересует только приемщиков вторсырья. Чтобы произвести ремонт этого устройства или произвести замену, важно понимать принцип его работы. В данной публикации мы расскажем о внутреннем устройстве различных компрессоров бытовых холодильников и их особенностях.

Кратко о типах оборудования

По принципу работы данное оборудование можно разделить на четыре вида:

  • Пароэжекторное, в качестве хладагента выступает, как правило, вода. Применяется в различных промышленных техпроцессах.
  • Абсорбционное, для работы использует не электрическую, а тепловую энергию.
  • Термоэлектрическое, на элементах Пельтье, широкое применение остается под вопросом ввиду низкого КПД (подробную информацию об этих устройствах можно найти на нашем сайте).
  • Компрессорное.

Именно последний вид оборудования широко используется в бытовых и промышленных агрегатах.

Компрессор для холодильника: принцип работы

Чтобы понять назначения данного аппарата, следует рассмотреть схему работы оборудования. Упрощенный вариант, где указаны только основные элементы конструкции, приведен ниже.

Рис. 1. Принцип работы холодильной установки

Обозначения:

  • А – Испарительный радиатор, как правило, изготовлен из медных трубок и расположен внутри камеры.
  • B – Компрессорный аппарат.
  • С – Конденсатор, представляет собой радиаторную сборку, расположенную на тыльной стороне установки.
  • D – Капиллярная трубка, служит для выравнивания давления.

Теперь рассмотрим, алгоритм работы системы:

  1. При помощи компрессора (В на рис. 1), пары хладагента (как правило, это фреон) нагнетаются в радиатор конденсатора (С). Под давлением происходит их конденсация, то есть фреон меняет свое агрегатное состояние, переходя из пара в жидкость. Выделяемое при этом тепло радиаторная решетка рассеивает в окружающий воздух. Если обратили внимание, тыльная часть работающей установки ощутимо горячая.
  2. Покинув конденсатор, жидкий хладагент поступает в выравниватель давления (капиллярная трубка D). По мере продвижения через данный узел давление фреона снижается.
  3. Жидкий хладагент, теперь уже под низким давлением, поступает в испарительный радиатор (А), под воздействием тепла которого, он опять меняет агрегатное состояние. То есть становиться паром. В процессе этого происходит охлаждение испарительного радиатора, что в свою очередь привод к понижению температуры в камере.

Далее идет повторение цикла, до установления в камере необходимой температуры, после чего датчик подает сигнал на реле для отключения электроустановки. Как только происходит повышение температуры выше определенного порога, аппарат включается и установка работает по описанному циклу.

Исходя из вышеописанного, можно заключить, что данное устройство представляет собой насос, обеспечивающий циркуляцию хладагента в системе охлаждения.

Классификация компрессоров в холодильном оборудовании

Несмотря на общий принцип работы, конструкция механизмов может существенно отличатся. Классификация производится по принципу действия на три подтипа:

  1. Динамический. В таких устройствах циркуляция хладагента производится под воздействием вентилятора. В зависимости от конструкции последнего их принято разделять на осевые и центробежные. Первые устанавливаются внутрь системы, и в процессе работы нагнетают давление. Их принцип работы такой же, как у обычного вентилятора. Осевой компрессор

У вторых более высокий КПД за счет роста кинетической энергии, под воздействием центробежной силы.

Центробежный компрессор в разрезе

Основной недостаток таких систем – деформация лопастей вследствие эффекта кручения, возникающего под воздействием крутящего момента. Динамические установки не применяются в бытовом оборудовании, поэтому для нас они не представляет интереса.

  1. Объемный. В таких устройствах эффект сжатия производится при помощи механического приспособления, приводящегося в действие двигателем (электромотором). Эффективность данного типа оборудования значительно выше, чем у винтовых агрегатов. Широко применялся до появления недорогих роторных аппаратов.
  2. Роторный. Этот подвид отличается долговечностью и надежностью, в современных бытовых агрегатах устанавливается именно такая конструкция.

Учитывая, что в бытовых устройствах используются два последних подвида, имеет смысл рассмотреть их устройство более подробно.

Устройство поршневого компрессора холодильника

Данный аппарат представляет собой электрический мотор, у которого вертикальный вал, конструкция размещается в герметизированном металлическом кожухе.

Конструкция поршневого компрессора в виде схемы

Обозначения:

  1. Нижняя часть металлического кожуха.
  2. Крепление статора электромотора.
  3. Статор двигателя.
  4. Корпус внутреннего электромотора.
  5. Крепеж цилиндра.
  6. Крышка цилиндра.
  7. Плита крепления клапана.
  8. Корпус цилиндра.
  9. Поршневой элемент.
  10. Вал с кривошипной шейкой.
  11. Кулиса.
  12. Ползунок кулисного механизма.
  13. Завитая в спираль медная трубка для нагнетания хладагента.
  14. Верхняя часть герметичного кожуха.
  15. Вал.
  16. Крепление подвески.
  17. Пружина.
  18. Кронштейн подвески.
  19. Подшипники, установленные на вал.
  20. Якорь электродвигателя.

В зависимости от конструкции поршневой системы данные устройства делятся на два типа:

  1. Кривошипно-шатунные. Используются для охлаждения камер большого объема, поскольку выдерживают значительную нагрузку.
  2. Кривошипно-кулисные. Применяются в двухкамерных холодильниках, где практикуется совместная работа двух установок (для морозильника и основной емкости).
Читать еще:  Почему не отключается холодильник

В более поздних моделях поршень приводится в действие не электродвигателем, а катушкой. Такой вариант реализации более надежен, за счет отсутствия механической передачи, и экономичен, поскольку потребляет меньше электроэнергии.

Обратим внимание, что поршневые аппараты не подлежат ремонту в бытовых условиях, поскольку их разборка приводит к потере герметичности. Теоретически ее можно восстановить, но для этого необходимо специализированное оборудование. Поэтому при выходе аппаратов из строя, как правило, производится их замена.

Устройство роторных механизмов

Если быть точным, то такие устройства необходимо называть двухроторными, поскольку необходимое давление создается благодаря двум роторам со встречным вращением.

Конструкция линейного роторного компрессора в виде схемы

Обозначения:

  1. Отводной патрубок.
  2. Отделитель масла.
  3. Герметичный кожух.
  4. Фиксируемый на кожухе статор.
  5. Обозначение внутреннего диаметра кожуха.
  6. Обозначение диаметра якоря.
  7. Якорь.
  8. Вал.
  9. Втулка.
  10. Лопасти.
  11. Подшипник на валу якоря.
  12. Крышка статора.
  13. Вводная трубка с клапаном.
  14. Камера-аккумулятор.

Устройство инверторного компрессора холодильника

По сути, это не отдельный вид, а особенность работы. Как уже рассматривалось выше, мотор установки отключается при достижении пороговой температуры. Когда она поднимается выше установленного предела, производится подключение двигателя на полной мощности. Такой режим запуска приводит к снижению ресурса электромеханизма.

Возможность избавиться от такого недостатка появилась с внедрением инверторных установок. В таких системах двигатель постоянно находится во включенном состоянии, но при достижении нужной температуры снижается его скорость вращения. В результате хладагент продолжает циркулировать в системе, но значительно медленней. Этого вполне достаточно для поддержки температуры на заданном уровне. При таком режиме работы продлевается срок службы и меньше потребляется электроэнергии. Что касается остальных характеристик, то они остаются неизменными.

Как работает холодильное оборудование?

Вы никогда не задумывались, почему в холодильнике — холодно, и что общего у морозильного шкафа и кондиционера? В этом материале разбираемся, как работает холодильное оборудование.

Замечали, что, когда вы выходите из душа, вам всегда прохладно? Дело в том, что влага при испарении поглощает тепло. А при конденсации, наоборот, тепло выделяется. На этих явлениях и основан принцип действия паровых компрессорных холодильных машин– в них по замкнутому кругу двигается специальная жидкость (хладагент). Хладагент испаряется в испарителе и конденсируется в конденсаторе. При этом испаритель охлаждается, а конденсатор греется.

Чтобы хладагент испарялся и конденсировался в нужных местах, в холодильном контуре должны присутствовать еще два элемента – компрессор и дросселирующее устройство.

Компрессор сжимает газообразный хладагент в конденсаторе, где он под действием высокого давления переходит в жидкую форму, выделяя тепло. А дросселирующее устройство (капиллярная трубка или терморегулирующий вентиль) затрудняет движение хладагента и поддерживает высокое давление в конденсаторе. После дросселя давление в контуре намного ниже, и попавший туда хладагент начинает испаряться внутри испарителя, поглощая тепло. Далее он, уже в газообразном виде, снова попадает в компрессор, и цикл повторяется.

Многие холодильные установки комплектуются дополнительными элементами.

Фильтр-осушитель устанавливается перед дросселирующим устройством. Его задачей является извлечение из хладагента воды и механических частиц. При его отсутствии капилляр может засориться или замерзнуть.

Терморегулятор (термостат) выключает компрессор при достижении необходимой температуры.

Ресивер повышает эффективность холодильной установки. Без терморегулирущего вентиля (с капиллярной трубкой) скорость выработки холода является постоянной. И, если она будет слишком большой, компрессор будет часто включаться–выключаться, а если слишком маленькой — охлаждение будет идти слишком долго. Использование ТРВ позволяет изменять скорость охлаждения в больших пределах, но требует наличия ресивера для компенсирования колебаний расхода хладагента.

Различные датчики температуры и давления, управляемые электроникой регуляторы давления и клапаны используются для повышения эффективности устройства и поддержания специфических режимов работы.

Из холода в жар

Чаще всего холодильная машина используется именно для охлаждения — испаритель расположен в охлаждаемом объеме, а конденсатор вынесен в окружающую среду. Так работают кондиционеры, холодильники и морозильники. Но холодильный контур не только поглощает тепло на испарителе, но и выделяет его на конденсаторе. Нельзя ли использовать холодильную машину «наоборот» — для обогрева, расположив конденсатор в обогреваемом помещении, а испаритель вынеся наружу?

Еще как можно. Холодильная машина использует электроэнергию не для непосредственного нагрева (как ТЭН), а для переноса тепла, поэтому эффективность ее выше, чем у обычного электронагревателя. Многие современные кондиционеры могут работать «наоборот», используя теплообменник внутреннего блока как конденсатор, а теплообменник внешнего блока – как испаритель. В таком режиме на 1 кВт потребленной мощности кондиционер может произвести 2–6 кВт тепла. Греть комнату кондиционером может быть значительно выгоднее, чем электрообогревателем!

Однако здесь есть некоторые тонкости — эффективность холодильной машины уменьшается при падении температуры на испарителе и ее росте на конденсаторе. Это связано с тем, что теплообмен между двумя веществами происходит тем быстрее, чем больше разница их температур. А поскольку температура кипения хладагента постоянна, то, чем ниже температура в испарителе, тем медленнее идет теплообмен и тем меньше тепла он вырабатывает при той же потребляемой мощности. И при температуре окружающей среды до -5…-10°С эффективность кондиционера как отопительного прибора становится невысока.

Поэтому использовать кондиционер для отопления дома или квартиры можно, только если температура зимой не падает ниже -5°С.

В местах с более холодным климатом в последнее время все большую популярность получают тепловые насосы – паровые компрессорные холодильные машины, у которых испаритель помещен под землю на глубину, большую глубины промерзания. Поскольку там всегда сохраняется положительная температура, эффективность теплового насоса не зависит от времени года. Такие устройства намного экономичнее электрических обогревателей и могут использоваться для отопления жилища круглый год при любой температуре. К сожалению, высокая стоимость тепловых насосов пока препятствует их популярности.

Виды компрессоров

Поршневые компрессоры устанавливаются в основном в холодильниках и морозильниках. В большинстве моделей поршень приводится в движение обычным электродвигателем, двигающим поршень через шатунно-кривошипный, кулачковый или кулисный механизм.

Существуют также электромагнитные (линейные) поршневые компрессоры. В них цилиндр расположен внутри катушки, создающей электромагнитное поле, которое приводит в движение поршень.

Поршневые компрессоры способны создавать высокое давление, обеспечивая большой перепад температур на испарителе и конденсаторе. Кроме того, обычный поршневой компрессор имеет достаточно простую конструкцию, не требующую высокой точности изготовления деталей, соответственно стоят они недорого. Однако недостатков у поршневых компрессоров тоже хватает:

  • Несбалансированность однопоршневого компрессора является причиной высокого уровня шума и вибраций при работе.
  • Большое количество движущихся деталей приводит к ускоренному износу и снижению ресурса.
  • Опасность поломки при быстром повторном пуске. Сразу после остановки в цилиндре компрессора наличествует высокое давление. Если в этот момент включить компрессор, создается критическая нагрузка на двигатель, могущая привести к его повреждению.

Поэтому поршневой компрессор можно повторно запускать только через несколько минут после остановки, когда давление в системе выровняется. Защитой от повторного пуска снабжены далеко не все модели, поэтому холодильное оборудование рекомендуется подключать через реле времени с задержкой включения в 5–10 минут.

Ротационные компрессоры (иногда называемые роторными) создают давление за счет изменяющегося зазора между вращающимся ротором и корпусом компрессора.

Существуют различные модификации этого вида компрессоров — с эксцентричным ротором, с подвижными лепестками, с качающимся ротором, спиральный и т. п.

Все они обладают небольшими габаритами, низким уровнем шума и увеличенным ресурсом за счет снижения количества подвижных деталей. К недостаткам этого вида можно отнести сложность изготовления (ротор и корпус должны быть изготовлены с высокой точностью) и низкое максимальное давление. Такие компрессоры чаще используются в климатической технике, для которой не требуется создавать очень низкую температуру.

Ротационными и поршневыми список компрессоров не исчерпывается — существуют еще центробежные, винтовые, кулачковые и другие. Но в бытовой технике они используются реже.

Вне зависимости от вида компрессор может быть неинверторным (стандартным) или инверторным. У обычных компрессоров скорость вращения двигателя постоянна, для поддержания заданной температуры он периодически включается и выключается. В инверторных компрессорах двигатель подключен через частотный преобразователь (инвертор), с помощью изменения частоты напряжения меняющий скорость вращения электродвигателя. Такой компрессор поддерживает заданную температуру выставлением нужной скорости вращения. Инверторные компрессоры дороже, но экономичнее, эффективнее и имеют больший ресурс.

Типы хладагентов

В качестве хладагента в холодильных машинах используются различные жидкости и газы — аммиак, пропан, фреоны (смеси углеводородов). Используемый в холодильной машине хладагент сильно влияет как на ее характеристики, так и на условия эксплуатации. Например, кондиционер, заправленный фреоном R-134a (температура кипения -26,5 °С) при -30 на улице работать в режиме обогрева не будет вообще — фреон просто не вскипит в наружном блоке. Более того, попытка включения кондиционера в таких условиях с большой вероятностью приведет к его поломке — попадание жидкости (а не газа) в компрессор обычно выводит его из строя.

Читать еще:  Что такое ионизатор воздуха

Чем ниже температура кипения хладагента, тем более низкую температуру можно получить на испарителе холодильной машины. Однако, понизить температуру в морозильнике, просто поменяв фреон на более «холодный», скорее всего, не выйдет — хладагенты с низкой температурой кипения требуют большего давления для конденсации. Компрессор, рассчитанный на фреон с высокой температурой кипения, просто не сможет создать такое давление. Поэтому при замене хладагента следует придерживаться рекомендаций из инструкции, и не заправлять хладагент с характеристиками, сильно отличающимися от рекомендованных.

В бытовых устройствах чаще всего используются следующие хладагенты:

Фреон R22 (хладон 22, хлордифторметан) до недавних пор часто использовался в холодильных и морозильных установках. Обладает достаточно низкой температурой кипения (-40,8°С), при утечке возможна дозаправка системы. Однако из-за вреда, наносимого окружающей среде (разрушение озонового слоя) R22 в последнее время используется редко, а во многих странах вообще запрещен.

R410A и R407С (хлорофторокарбонат, температура кипения -51,4°С) используются взамен R22. Они не вредят экологии, но требуют большего давления для конденсации, поэтому техника, заправляемая R410 или R407, стоит дороже. Кроме того, при возникновении утечек в системе, заполненной этими фреонами, могут возникнуть проблемы. Эти фреоны состоят из нескольких компонентов, которые улетучиваются неравномерно, поэтому при утечке более чем 40 % R410A дозаправка уже невозможна. Еще хуже обстоит дело с R407C – при возникновении утечки систему следует перезаправлять полностью.

R134 (тетрафторэтан) используется в кондиционерах взамен вышедшего из употребления R12. Температура кипения R134 составляет -26,3°С, поэтому в низкотемпературной технике он не используется. Однако, хоть R134 и не вреден для озонового слоя, он относится к газам, усиливающим парниковый эффект, поэтому безвредным его назвать нельзя.

R600a (изобутан) все чаще используется в холодильной технике вместо менее экологичного R134. Его преимуществами являются низкое давление конденсации и высокая удельная теплота парообразования – холодильники, использующие этот фреон, дешевле и экономичнее. Однако из-за высокой температуры кипения (-12°С) заправленную им технику нельзя использовать на улице при отрицательных температурах.

Следует также помнить о том, что каждый тип фреона требует использования определенного вида масла для смазки деталей компрессора. Обычно тип (а иногда и марка масла) приводятся в сопроводительной документации к фреону. Использование других масел может привести к поломке компрессора.

Как видно, ничего сложного в холодильной технике нет, а понимание принципов ее работы может значительно продлить жизнь технике, позволить сэкономить на электроэнергии и уберечь от неправильных действий, могущих привести к поломке прибора.

Компрессор для холодильника: виды и устройство

Устройство компрессора холодильника

И так как каждый холодильник имеет очень сложное устройство, то необходимо выяснить из каких частей он состоит.

Холодильник состоит из:

  • Конденсатора, который представлен решеткой, знакомы с ней и видели ее все, однако не каждый знает, в чем заключаются ее функции;
  • Хладагента, в котором применяется фреон, если происходит его утечка, то можно сделать вывод о том, что холодильник вышел из строя;
  • Испарителя, который не видно, а он представлен внутренней стенкой холодильника;
  • Компрессора, который является основной частью холодильника и представлен насосом, который служит для прокачки хладагента по трубкам, для того чтоб он забирал горячий воздух из основы холодильника.

Самой частой поломкой холодильника является, выход из строя компрессора. Если сравнить холодильник с человеком, то компрессор является, сердцем человека, а хладагент можно сопоставить с кровью. Эти два составляющих играют основополагающую роль в функциональности холодильника.

Компрессор перекачивает пар и помещает в конденсатор, а там уже хладагент превращается в жидкое состояние. Хладагент овладевает высокой температурой и именно в этом заключается принцип и основа рабочего компрессора.

Виды компрессоров для холодильников

Большинство людей слышали о том, что современные модели холодильников содержат в себе поршневой компрессор. И если кто- то думает, что японцы могут придумать иные компрессора, то это заблуждение.

Каждый из видов компрессоров обладает рядом своих плюсов и минусов.

Выделим несколько видов популярных типов компрессоров:

  • Винтовые и поршневые;
  • Ротационные и спиральные;
  • Центробежные.

Именно поршневые компрессоры, являются основной частью многих современных холодильников. И большая часть их выполняют свою работу от электродвигателей, а они оснащены внутренней подвеской и вертикальным валом.

Как разобрать компрессор от холодильника

Компрессор в холодильнике является единственным агрегатом, который не разбирается, так как он выполнен в закрытом не разборном корпусе. И при выходе компрессора из строя почти во всех случаях необходима замена.

В редких случая , но все же удается восстановить компрессор, при том случае когда он заклинил его удается сорвать с места не вскрывая корпус.

Для человека с руками нет, не возможного и он может разобрать компрессор.

Для этого необходимо аккуратно разрезать верхнюю часть компрессора болгаркой. После разреза вы получаете доступ к внутренностям.

Если смотреть с теоретической стороны то заменить обмотку и другие детали можно, но восстановить корпус в домашних условиях не получится. И именно по той причине, что корпус не подлежит восстановлению, компрессор можно использовать для самодельных электроинструментов, но не как не для работы холодильника.

Если вы вызвали мастера, и он говорит, что нужна замена компрессора, то это даже не подлежит обсуждению и компрессор уже не отремонтировать. А насколько такой ремонт выгодный вам решать самим.

Как устроен компрессор, какая ее производительность, его типы и характеристики мы узнали. Так же мы рассказали о том, что разборка бытового холодильного компрессора практически не возможна не причинив вред оболочке. Если же вы хотите узнать, что именно находится внутри, рекомендуем ознакомиться с фото, где расположена схема в разрезе.

Роторный компрессор холодильника в разрезе

Компрессоры, которые имеют два ротора и называются двух роторными, являются аналогом соковыжималки с двумя шнеками, только винтовые спирали не равнозначны. Ведущий ротор имеет 4 выступа с закругленными вершами, от них прорезаны 6 ложбинок необходимого профиля. Два вала помещены в корпус в форме цилиндра сдвоенного типа. Вращение валов происходит на встречу друг другу.

Выходные и заборные отверстия часто размещены в диагональном виде, то есть сам процесс хладагента происходит сначала сверху роторов, а заканчивается внизу на спиралях сжатым газом. Если конструкция выполнена в таком образе, то роторные спирали с максимальной плотностью прилегают к корпусу. Вращение ведется так, что б от заборной камеры воздух расходился по бокам, захватываясь движущими валами.

На одном из роторов таких порций 4 , а на другом 6. Вращаясь по кругу спирали, встречаются в конце ее, а дальнейший цикл ведет к ударному сжатию газа под воздействием большого давления, а затем выбросу его наружу.

Для того чтоб понять всю прелесть этой конструкции вспомним, то что коэффициент отжима двухшнековой соковыжималки максимальный и они способны молоть даже косточки, если же конечно шнеки сделаны из стали. А такое подобие компрессора предлагает получить максимальное давление, которое не сможет создать другой компрессор.

Принцип работы компрессора холодильника

Работа обычного холодильника основана на действии хладагента, часто это фреон. Это вещество передвигается по замкнутому контуру и при этом меняет свою температуру. Под давлением достигает точки своего кипения, а точка кипения фреона – это от -30 и до -150ти, он испаряется и забирает все тепло которое располагает на стенках испарителя. Как результат температурный режим во внутренней камере снижается до 6 градусов.

Помощь в работе хладагента осуществляют составляющие части холодильника такие как:

  • В роли компонента, который создает необходимое давление, выступает компрессор;
  • Испаритель, он забирает тепло из нутрии холодильной камеры, которое туда попадает;
  • Конденсатор, который выдает тепло в наружу;
  • Отверстие дросселирующего типа, то есть вентиль терморегуляции и капиллиции.

Все эти действия динамические. Следует отдельно рассказать том, как работает двигатель в холодильнике. И какое действие необходимо применить в случае поломки. Мотор необходим для регулировки перепадов давления в системе. Он затягивает испаренный фреон, проводит сжатие и выталкивает назад в конденсатор. При этом температура хладагента повышается и снова он превращается в жидкость. Работает компрессор за счет электродвигателя, который расположен внутри корпуса. В холодильниках используют только, герметичные поршневые компрессора.

Такой принцип работы холодильника можно коротко описать как процесс отдачи внутреннего тепла в окружающую среду, а в результате этой отдачи воздух в камере охлаждается. И именно благодаря этому все продукты, которые мы храним в холодильнике долгое время, не портятся.

Еще отметим тот факт, что в разных местах холодильника разная температура, которую используют для оптимального хранения разных продуктов. В дорогих моделях холодильников есть четкое распределение зон, чаще всего это: обычное холодильное отделение, которое называют нулевой зоной (biofresh) предназначение, которой хранить мясо, рыбу, сыры, колбасы и овощей, следующая зона – это морозильная камера и зона быстрой заморозки. Быстрая заморозка способна заморозить продукт до 36 градусов за пару минут. При такой заморозке сохраняются все полезные вещества продуктов.

Читать еще:  Подключение инфракрасного обогревателя

Как работает компрессор для холодильника (видео)

Как можно заметить исходя из статьи строение компрессора холодильника, это сложная тема. Если у вас сломалась данная техника, то самостоятельно ее отремонтировать без данных знаний невозможно, лучше обратится к специалисту. И, в конце концов, лучше не пренебрегать покупкой новой детали и ее замены, так как нет гарантий, что новая установка прослужит долго.

По какому принципу работает компрессор в бытовом холодильнике

Существует несколько типов холодильных машин, но наиболее распространены компрессорные холодильники с фреоном в качестве хладагента. А компрессор холодильника правильно называть «мотор-компрессор». Это устройство с герметичным корпусом, внутри которого расположены непосредственно компрессор и привод (чаще всего электродвигатель).

Назначение компрессора в холодильнике

Принцип действия компрессионного холодильного устройства основан на обратном цикле Карно. В холодильнике (и в кондиционере) охлаждение и нагревание хладагента происходит за счет изменения его термодинамического состояния. В качестве хладагента выступает фреон — жидкость с низкой температурой кипения (испарения).

Работу холодильника можно «разложить» на два этапа:

  1. Попадая в камеру с низким давлением, фреон испаряется и отбирает тепло из окружающей среды.
  2. В камере с высоким давлением фреон конденсируется, выделяя тепло.

Камеру с низким давлением называют «испарителем», с высоким давлением — «конденсатором». Испаритель находится внутри холодильника, а конденсатор снаружи. Каждый из них представляет собой радиаторную сборку, повышающую эффективность теплообмена с окружающей средой.

Компрессор в холодильнике отвечает за циркуляцию хладагента, а вместе с дросселем (терморегулируемым вентилем или капилляром) обеспечивает разность давлений в камерах.

Принцип работы компрессора

Большинство агрегатов оборудуют поршневыми моделями, которые могут быть кривошипно-шатунными и кривошипно-кулисными. Лишь незначительная часть бытовых холодильников имеет в составе ротационные компрессоры.

Оба типа относятся к объемным компрессорам, в которых изменение давления происходит благодаря перемещению подвижного элемента внутри герметичной камеры. А перемещение элемента происходит за счет:

  • асинхронного электродвигателя;
  • двигателя постоянного тока (бортовые и инверторные холодильники);
  • электромагнита (поршневые линейные компрессоры).

Примечание! Есть еще одна большая группа — динамические компрессоры (лопаточные, осевые, центробежные и струйные). У них нет клапанов, и в отличие от объемных устройств, трубопроводы всасывания и нагнетания всё время сообщаются между собой, а метод компрессии построен на преобразовании энергии потока в потенциальную энергию давления. Эти виды в бытовых холодильниках не применяются.

Кривошипно-шатунный компрессор

Упрощенно схема выглядит в виде цилиндра с поршнем внутри. Возвратно-поступательное движение поршня осуществляется с помощью кривошипно-шатунного механизма, который закреплен к валу электродвигателя. За один поворот вала совершается полный рабочий цикл. А принцип работы компрессора холодильника можно проиллюстрировать как работу в виде двух фаз:

  1. Движение «из цилиндра». За поршнем создается зона разрежения, пары хладагента всасываются в компрессор из испарителя через свой открытый клапан. Нагнетательный клапан в конденсатор закрыт.
  2. Движение «в цилиндр». Всасывающий клапан закрывается. В цилиндре создается избыточное давление. Сжатые пары хладагента нагреваются, через открывающийся нагнетательный клапан выталкиваются в конденсатор, где они остывают и переходят в жидкое состояние.

Важно! В диапазоне малых мощностей (для бытовых холодильников) почти повсеместно используются герметичные агрегаты в стальном неразъемном корпусе. Достоинство конструкции в том, что охлаждение компрессор-мотора происходит непосредственно за счет паров хладагента. Но такие модели ремонту не подлежат, а устранение неисправности холодильника происходит путем замены компрессора.

Кривошипно-кулисный компрессор

Принципиальное отличие этого типа — способ создания для поршня возвратно-поступательного движения. В конструкции используется не коленчатый вал с двумя точками опоры, а консоль (кулиса) с одной точкой опоры на кривошип. То есть, вращательная пара заменена на возвратно-поступательный элемент.

Такое устройство облегчает процесс сборки для одноцилиндровых компрессоров, а точнее — упрощает их регулировку компенсацией неточностей реального производства путем небольших осевых смещений кулисы. Этот тип маломощных компрессоров в производстве дешевле и стоит меньше.

Важно! Для однопоршневого кулисного компрессора есть даже понятие «полной самоустанавливаемости деталей». Это возможно за счет одностороннего направления ориентации каждого подвижного элемента — вала с кривошипом, кулисы и поршня.

У двухцилиндровых моделей такого преимущества нет. Хотя на практике используется схема оппозитного компрессора, когда вторая кулиса приваривается к кривошипу с другой стороны, а второй поршень расположен на той же оси, что и первый, но с другой стороны вала двигателя.

Недостаток конструкции — ограничение мощности. Консольный вал выдерживает меньшие нагрузки, чем коленчатый вал.

Этот тип устанавливают в маленьких холодильниках, в двухкамерных моделях с двумя компрессорами и небольшими объемами камер (или одной из них).

Линейный компрессор

Это разновидность поршневого агрегата. Привод в разрезе можно представить как соленоид, у которого шток поршня движется в электромагнитном поле катушки цилиндрической формы. А соленоиды постоянного тока создают значительное усилие, направленное по оси катушки, и используются в качестве силового магнитного привода.

Линейный компрессор работает по следующей упрощенной схеме:

  1. На катушку подается постоянное напряжение. Поршень приходит в поступательное движение.
  2. По завершении движения катушка отключается, а поршень возвращается в исходное состояние с помощью пружины.

Отсутствие электродвигателя и кривошипной передачи уменьшает уровень шума и снижает потери мощности на преодоление сил трения (выше класс энергопотребления). По этим двум характеристикам линейные компрессоры лучшие для домашних холодильников.

Ротационный компрессор

У этого типа нет поршней, а работа обеспечивается за счет движения в статоре двух роторов винтовой формы с сопрягающимися плоскостями. Если проводить аналогию с поршневыми моделями, то роль цилиндра выполняет не статор, а охватывающий ротор — по мере прохождения к стороне нагнетания объём между пластинами уменьшается.

Внутренний, охватываемый, ротор выполняет функцию поршня — его пластины обеспечивают сжатие потока впереди и разрежение газовой среды сзади.

Этот тип применяют в холодильных системах средней и большой мощности — при одинаковых характеристиках с поршневыми аналогами размеры компрессора меньше. Холодопроизводительность маленьких моделей уступает поршневым образцам с такими же размерами.

Еще одна разновидность ротационного типа — спиральный компрессор. Он состоит из двух спиралей «вдетых» одна в другую. Верхняя спираль неподвижна и в центре основания имеет нагнетательное отверстие. Всасывание происходит при движении внутренней спирали на периферии системы.

Так же, как и у винтовых моделей, максимальное КПД возможно лишь для холодильных установок средней и большой мощности. Поэтому основная «бытовая» область применения — это системы кондиционирования воздуха.

Основные производители

Чтобы правильно подобрать холодильную технику, надо ориентироваться в её «содержимом». А основной узел, отвечающий за надежность, энергопотребление и производительность — это компрессор.

Лидером в производстве поршневых кривошипно-шатунных моделей считается американская компания TECUMSEN. По ее лицензиям работают многие заводы Европы и Азии.

Среди европейских производителей больше всего компрессор-моторов продает итальянский концерн EMBRACO. Заводы этого концерна в Европе, в Бразилии и в Китае производят около 20 млн. агрегатов в год, и их устанавливают на холодильниках такого известного производителя как LIEBHERR.

Концерну ELECTROLUX принадлежит несколько марок холодильников. Объём собственного производства мотор-компрессоров достигает около 12 млн. единиц в год, и они известны под следующими марками:

  • австрийский Verdichter;
  • итальянский Zem;
  • испанский Unite Germetique;
  • американский Kelvinator.

Очень хорошая репутация у датской компании DANFOSS. Её продукция вполне устраивает таких авторитетных производителей холодильников, как концерны BOSCH и SIEMENS.

Как подобрать компрессор

Как указывалось выше, при поломке компрессора, в большинстве случаев его просто меняют на новый. Но и при этом надо откачать из системы хладагент, загерметизировать трубопроводы, а после замены агрегата — закачать новый фреон и проверить его давление. Выполнить такие работы своими руками без специального оборудования невозможно. Поэтому лучше привлечь специалиста. Он же и подберет для замены такую же модель, а если её сняли с производства, то аналог с такими же характеристиками, что и вышедшая из строя деталь.

Совет! Один из способов сэкономить на ремонте «старенькой» марки холодильника — это установка б/у компрессора такой же марки, который сняли с аналогичного образца. И найти его можно в каждом регионе на сайтах объявлений по продаже и услугам соответствующего профиля.

Ссылка на основную публикацию
Adblock
detector