Диэлектрики и проводники в электрическом поле
Centr86.ru

Ремонт бытовой техники

Диэлектрики и проводники в электрическом поле

Диэлектрики и проводники в электрическом поле

Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц. В отсутствие внешнего поля частицы распределяются внутри вещества так, что создаваемое ими электрическое поле в среднем по объемам, включающим большое число атомов или молекул, равно нулю. При наличии внешнего поля происходит перераспределение заряженных частиц, и в веществе возникает собственное электрическое поле. Полное электрическое поле складывается в соответствии с принципом суперпозиции из внешнего поля и внутреннего поля создаваемого заряженными частицами вещества.

Вещество многообразно по своим электрическим свойствам. Наиболее широкие классы вещества составляют проводники и диэлектрики .

Основная особенность проводников – наличие свободных зарядов (электронов), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника. Типичные проводники – металлы.

В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды (рис. 1.5.1). Этот процесс называют электростатической индукцией , а появившиеся на поверхности проводника заряды – индукционными зарядами .

Индукционные заряды создают свое собственное поле которое компенсирует внешнее поле во всем объеме проводника: (внутри проводника).

Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.

Рисунок 1.5.1.

Все внутренние области проводника, внесенного в электрическое поле, остаются электронейтральными. Если удалить некоторый объем, выделенный внутри проводника, и образовать пустую полость, то электрическое поле внутри полости будет равно нулю. На этом основана электростатическая защита – чувствительные к электрическому полю приборы для исключения влияния поля помещают в металлические ящики (рис. 1.5.2).

Рисунок 1.5.2.

Так как поверхность проводника является эквипотенциальной, силовые линии у поверхности должны быть перпендикулярны к ней.

В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

При внесении диэлектрика во внешнее электрическое поле в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.

Связанные заряды создают электрическое поле которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля. Этот процесс называется поляризацией диэлектрика . В результате полное электрическое поле внутри диэлектрика оказывается по модулю меньше внешнего поля

Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме к модулю напряженности полного поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества .

Существует несколько механизмов поляризации диэлектриков. Основными из них являются ориентационная и электронная поляризации. Эти механизмы проявляются главным образом при поляризации газообразных и жидких диэлектриков.

Ориентационная или дипольная поляризация возникает в случае полярных диэлектриков , состоящих из молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают. Такие молекулы представляют собой микроскопические электрические диполи – нейтральную совокупность двух зарядов, равных по модулю и противоположных по знаку, расположенных на некотором расстоянии друг от друга. Дипольным моментом обладает, например, молекула воды, а также молекулы ряда других диэлектриков (H2S, NO2 и т. д.).

При отсутствии внешнего электрического поля оси молекулярных диполей из-за теплового движения ориентированы хаотично, так что на поверхности диэлектрика и в любом элементе объема электрический заряд в среднем равен нулю.

При внесении диэлектрика во внешнее поле возникает частичная ориентация молекулярных диполей. В результате на поверхности диэлектрика появляются нескомпенсированные макроскопические связанные заряды, создающие поле направленное навстречу внешнему полю (рис. 1.5.3).

Рисунок 1.5.3.

Поляризация полярных диэлектриков сильно зависит от температуры, так как тепловое движение молекул играет роль дезориентирующего фактора.

Электронный или упругий механизм проявляется при поляризации неполярных диэлектриков, молекулы которых не обладают в отсутствие внешнего поля дипольным моментом. Под действием электрического поля молекулы неполярных диэлектриков деформируются – положительные заряды смещаются в направлении вектора а отрицательные – в противоположном направлении. В результате каждая молекула превращается в электрический диполь, ось которого направлена вдоль внешнего поля. На поверхности диэлектрика появляются нескомпенсированные связанные заряды, создающие свое поле направленное навстречу внешнему полю Так происходит поляризация неполярного диэлектрика (рис. 1.5.4).

Деформация неполярных молекул под действием внешнего электрического поля не зависит от их теплового движения, поэтому поляризация неполярного диэлектрика не зависит от температуры. Примером неполярной молекулы может служить молекула метана CH4. У этой молекулы четырехкратно ионизированный ион углерода C 4– располагается в центре правильной пирамиды, в вершинах которой находятся ионы водорода H + . При наложении внешнего электрического поля ион углерода смещается из центра пирамиды, и у молекулы возникает дипольный момент, пропорциональный внешнему полю.

Рисунок 1.5.4.

Электрическое поле связанных зарядов, возникающее при поляризации полярных и неполярных диэлектриков, изменяется по модулю прямо пропорционально модулю внешнего поля В очень сильных электрических полях эта закономерность может нарушаться, и тогда проявляются различные нелинейные эффекты . В случае полярных диэлектриков в сильных полях может наблюдаться эффект насыщения , когда все молекулярные диполи выстраиваются вдоль силовых линий. В случае неполярных диэлектриков сильное внешнее поле, сравнимое по модулю с внутриатомным полем, может существенно деформировать атомы или молекулы вещества и изменить их электрические свойства. Однако, эти явления практически никогда не наблюдаются, так как для этого нужны поля с напряженностью порядка . Между тем, гораздо раньше наступает электрический пробой диэлектрика.

У многих неполярных молекул при поляризации деформируются электронные оболочки, поэтому этот механизм получил название электронной поляризации . Этот механизм является универсальным, поскольку деформация электронных оболочек под действием внешнего поля происходит в атомах, молекулах и ионах любого диэлектрика.

В случае твердых кристаллических диэлектриков наблюдается так называемая ионная поляризация , при которой ионы разных знаков, составляющие кристаллическую решетку, при наложении внешнего поля смещаются в противоположных направлениях, вследствие чего на гранях кристалла появляются связанные (нескомпенсированные) заряды. Примером такого механизма может служить поляризация кристалла NaCl, в котором ионы Na + и Cl – составляют две подрешетки, вложенные друг в друга. В отсутствие внешнего поля каждая элементарная ячейка кристалла NaCl (см. Часть I § 3.6 ) электронейтральна и не обладает дипольным моментом. Во внешнем электрическом поле обе подрешетки смещаются в противоположных направлениях, т. е. кристалл поляризуется.

При поляризации неоднородного диэлектрика связанные заряды могут возникать не только на поверхностях, но и в объеме диэлектрика. В этом случае электрическое поле связанных зарядов и полное поле могут иметь сложную структуру, зависящую от геометрии диэлектрика. Утверждение о том, что электрическое поле в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем строго справедливо только в случае однородного диэлектрика , заполняющего все пространство, в котором создано внешнее поле. В частности:

Электростатика: элементы учебной физики

Лекция 7. Проводники и диэлектрики в электрическом поле

Настало время исследовать явления, происходящие при введении в электрическое поле проводников и диэлектриков. К этому моменту учащиеся уже владеют основными понятиями, изучили физические величины, законы электростатики и представляют себе их экспериментальное обоснование. Поэтому они готовы к анализу существующих фактов, выдвижению правдоподобных гипотез, построению теоретических моделей явлений, выводу следствий из предложенных моделей и их экспериментальному обоснованию.

Учебно-исследовательская деятельность теперь может быть организована главным образом в форме постановки и выполнения экспериментальных заданий. Это, разумеется, не исключает более серьёзных работ, направленных на создание новых учебных экспериментов. Большой интерес для учащихся может представить исследование в электрическом поле привычных для них твёрдых, жидких и газообразных объектов. Экспериментальные задания этого этапа помимо прочего должны способствовать углублению сформированных понятий напряжённости и потенциала электрического поля.

7.1. Проводники в электростатическом поле

Проводники отличаются от диэлектриков тем, что у них высока концентрация свободных носителей заряда. В металлах ими являются свободные электроны, которые в отличие от связанных электронов способны перемещаться по всему объёму тела. Появление свободных электронов обусловлено тем, что в атомах металлов валентные электроны слабо взаимодействуют с ядрами и легко утрачивают связи с ними. Поэтому металл представляет собой кристаллическую решётку, в узлах которой расположены положительные ионы, окружённые отрицательным электронным газом.

Внесём в электростатическое поле напряжённостью Е металлическое тело. В первый момент внутри проводника возникает поле той же напряжённости Е. Оно действует на свободные электроны, и те перемещаются против поля Е. По мере перераспределения электронов в проводнике возникает внутреннее поле E, направленное противоположно внешнему полю Е. Электроны перемещаются до тех пор, пока результирующее поле внутри проводника не станет равно нулю: Е = ЕE’ = 0.

Этот факт учащиеся уже неоднократно подтвердили экспериментом. Понятно, что замкнутая проводящая оболочка полностью экранирует находящуюся внутри неё область от внешних электрических полей, следовательно, может являться электростатической защитой.

7.2. Электростатическое изображение

Пусть два одинаковых по модулю и противоположных по знаку точечных заряда +q и –q находятся на некотором расстоянии друг от друга. Созданное ими электростатическое поле характеризуется системами взаимно перпендикулярных силовых линий и эквипотенциальных поверхностей. Одной из таких поверхностей является плоскость, проходящая через середину отрезка, соединяющего заряды. Потенциал этой плоскости равен нулю, т.к., согласно принципу суперпозиции, для точек, находящихся на равных расстояниях r1 = r2 от зарядов:

Теперь совместим с этой плоскостью тонкую проводящую пластину и заземлим её. Поле при этом не изменится, поскольку все точки пластины будут иметь одинаковый (нулевой) потенциал. Если убрать заряд –q, находящийся за проводящей пластиной, то поле перед ней останется прежним.

Отсюда следует, что, если к точечному заряду поднести тонкую проводящую заземлённую пластину, то электрическое поле между зарядом и пластиной будет в точности таким же, как поле, созданное реальным зарядом и его мнимым изображением противоположного знака в пластине, как в зеркале.

Метод электростатических изображений, не отличаясь универсальностью, всё же позволяет упростить решение многих задач.

7.3. Диэлектрики в электростатическом поле

У диэлектриков электроны связаны с атомами и не могут под действием электрического поля свободно перемещаться. Так как концентрация свободных носителей заряда ничтожно мала, электростатическая индукция отсутствует. Поэтому напряжённость поля внутри диэлектрика не обращается в нуль, а лишь в большей или меньшей степени уменьшается.

В этом можно убедиться, поставив следующие опыты. На электрометре закрепим металлическую пластину и зарядим её. Поднесём к заряженной пластине другую металлическую пластину и увидим, что показания электрометра уменьшились. Это объясняется тем, что за счёт электростатической индукции на ближайшей поверхности поднесённого проводника возникает заряд противоположного знака.

Теперь вместо металлической поднесём к заряженной пластине нейтральную диэлектрическую пластину. Вновь увидим, что показания электрометра уменьшились. Значит, и на поверхности диэлектрика в электрическом поле также возникают заряды. Отсюда следует, что диэлектрик, помещённый во внешнее электрическое поле, оказывает на него влияние, создавая своё электрическое поле, уменьшающее внешнее.

В электрическое поле заряженного шара внесём нейтральную диэлектрическую палочку на нити и обнаружим, что палочка поворачивается, располагаясь вдоль силовой линии поля. Значит, палочка становится диполем – концы её приобретают заряды противоположных знаков.

7.4. Полярные и неполярные диэлектрики

Если молекула состоит из двух ионов (K + Сl – ), один из которых положительный, а другой отрицательный, то центры распределения положительного и отрицательного зарядов не совпадают. Такие молекулы и состоящие из них диэлектрики называются полярными.

Если молекула состоит из одного или нескольких одинаковых атомов (например, Н2), то центры распределения отрицательного и положительного зарядов совпадают, и она называется неполярной молекулой, а диэлектрик – неполярным диэлектриком.

7.5. Поляризация диэлектриков

Неполярные атомы и состоящие из них молекулы нейтральны. Полярные молекулы в первом приближении можно считать диполями. Из-за теплового движения полярные молекулы ориентированы беспорядочно, поэтому заряд и напряжённость электрического поля в диэлектрике в среднем равны нулю.

Поместим полярный диэлектрик в однородное электростатическое поле E, созданное параллельными пластинами, которым сообщили заряды противоположных знаков. На диполи в однородном поле действует вращающий момент. В результате молекулы-диполи стремятся развернуться вдоль силовых линий. Чем больше напряжённость поля и ниже температура диэлектрика, а значит, и интенсивность хаотического движения, тем выше степень ориентации диполей.

При помещении в электрическое поле неполярных диэлектриков происходит деформация атомов, в результате чего центр распределения положительного заряда смещается по полю, а центр распределения отрицательного заряда – против поля. Так, неполярная молекула превращается в диполь, ось которого сонаправлена с полем, а длина определяется напряжённостью поля.

При внесении диэлектрика в электрическое поле вследствие переориентации или деформации молекул на его поверхностях возникают связанные электрические заряды. Это явление называется поляризацией диэлектрика.

Связанные заряды на поверхности тела создают внутри него электрическое поле E’, направленное противоположно внешнему полю E. Результирующая напряженность Е = E + E’ оказывается меньше E, т.е. Е = ЕE’ U/d. Диэлектрическую проницаемость диэлектрика определите по формуле

Демонстрационный эксперимент целесообразно провести так. Покажите учащимся лист стекла толщиной 4 мм, диэлектрическую проницаемость которого вы будете измерять. Собрав установку, включите высоковольтный источник, установите напряжение U = 0,5 кВ и прикоснитесь его выводами к стержню и корпусу электрометра. Стрелка прибора отклонится. Выключите источник и удалите из промежутка между электродами стеклянную пластину. Стрелка электрометра отклоняется больше. Запомните показание, электрометр разрядите, к нему подключите выводы высоковольтного источника, включите источник и повышайте напряжение до тех пор, пока стрелка электрометра не отклонится на то же число делений. По цифровому измерителю источника прочитайте значение напряжения U между электродами для случая, когда пластина удалена, и по формуле = U/U вычислите значение диэлектрической проницаемости. В наших опытах для пластины из оконного стекла толщиной 4 мм получилось U = 2,1 кВ, следовательно, диэлектрическая проницаемость стекла = 4,2.

Это совсем неплохой результат для демонстрационного опыта. Заметим, что лучше не использовать в качестве диэлектриков полимерные материалы, т.к. придётся специально избавляться от их случайной электризации или поляризации.

Вопросы и задания для самоконтроля

1. Что происходит в проводниках и диэлектриках при внесении их в электростатическое поле?

2. Предложите демонстрационный эксперимент, в котором учащиеся воочию убеждаются, что в проводнике имеются свободные носители заряда, а в диэлектрике они отсутствуют.

3. Детально объясните, почему для определения потенциала в точке поля необходимо использовать пламенный зонд. Возможно ли отказаться от пламени и чем его в таком случае можно заменить?

4. Предложите простой способ, позволяющий в демонстрационным опыте нарисовать эквипотенциальные линии исследуемого электростатического поля.

5. Предложите методику формирования понятия эквипотенциальности поверхности проводника в электростатическом поле.

6. Какие процессы происходят в воздухе вокруг острия, имеющего значительный потенциал относительно Земли?

7. В чём физическая сущность метода электростатических изображений?

8. Детально объясните результат опыта по поляризации диэлектрической плёнки, помещённой в электрическое поле.

9. Оцените дидактическую эффективность методики определения диэлектрической проницаемости стекла непосредственно на уроке.

10. С какой целью и где применяются электреты в современных условиях?

Беляев И.П., Дружинин В.П., Шефер Н.И. Демонстрация электретных свойств диэлектриков. – Физика в школе, 1981, № 6.

Беляев И.П., Дружинин В.П., Шефер Н.И. Исследование электретных свойств диэлектриков. – Физика в школе, 1981, № 3.

Беляев И.П., Дружинин В.П., Рожков И.Н. Электретный эффект: Учебно-методическое пособие. – Оренбург: Изд-во ОГПИ, 1997.

Калашников С.Г. Электричество. – М.: Физматлит, 2004.

Демонстрационный эксперимент по физике в старших классах средней школы. Т. 2. Электричество. Оптика. Физика атома: Под ред. А.А.Покровского. – М.: Просвещение, 1972.

Шахмаев Н.М., Шилов В.Ф. Физический эксперимент в средней школе: Механика. Молекулярная физика. Электродинамика. – М.: Просвещение, 1989.

Продолжение см. в № 24/07

Проводники и диэлектрики в электрическом поле

Содержание:

Внесение некоторого вещества в электрическое поле может привести к существенному его изменению; это обусловлено тем, что вещество составляют заряженные частицы. Если внешнее поле отсутствует, распределение частиц вещества происходит таким образом, что электрическое поле, которое они создают, в среднем по объемам, включающим большое число атомов или молекул, равно нулю. Если внешнее поле присутствует, заряженные частицы перераспределяются, и в веществе возникает собственное электрическое поле. Полное электрическое поле E → включает в себя (согласно принципу суперпозиции) внешнее поле E 0 → и внутреннее поле E ‘ → которое создается заряженными частицами вещества.

Электрические свойства веществ обуславливают их многообразие. Самые широкие классы веществ – это проводники и диэлектрики.

Проводники

Отличительная черта проводников заключается в наличии свободных зарядов (электронов), принимающих участие в тепловом движении и способных осуществлять перемещение по всему объему проводника. Типичным примером проводников служат металлы.

Если внешнее поле отсутствует, то в любом элементе объема проводника отрицательный свободный заряд будет компенсироваться положительным зарядом ионной решетки. В проводнике, который внесен в электрическое поле, произойдет перераспределение свободных зарядов, следствием чего будет возникновение на поверхности проводника нескомпенсированных положительных и отрицательных зарядов (рис. 1 . 5 . 1 ). Описанный процесс носит название электростатической индукции, а возникающие на поверхности проводника заряды называют индукционными зарядами.

Индукционными зарядами создается свое собственное поле E ‘ → и оно компенсирует внешнее поле E 0 → во всем объеме проводника: E → = E 0 → + E ‘ → = 0 (внутри проводника).

Полное электростатическое поле внутри проводника есть нуль, а потенциалы во всех точках являются одинаковыми и равными потенциалу на поверхности проводника.

Рисунок 1 . 5 . 1 . Электростатическая индукция.

Все внутренние области проводника, который внесен в электрическое поле, остаются электронейтральными. Удаление некоторого объема, выделенного внутри проводника, а соответственно образование пустой полости, приведет к тому, что электрическое поле внутри полости станет равным нулю. На этом основана электростатическая защита – приборы, имеющие чувствительность к электрическому полю в целях исключения влияния поля помещают в металлические ящики (рис. 1.5.2).

Рисунок 1 . 5 . 2 . Схема электростатической защиты. Поле в металлической полости равно нулю.

Поскольку поверхность проводника эквипотенциальна, необходимо, чтобы силовые линии у поверхности являлись перпендикуляром к ней.

Диэлектрики

Диэлектрики (изоляторы) отличаются от проводников тем, что не имеют свободных электрических зарядов. Диэлектрики включают в себя нейтральные атомы или молекулы. Заряженные частицы в нейтральном атоме являются связанными друг с другом и не имеют способности к перемещению под действием электрического поля по всему объему диэлектрика.

Внесение диэлектрика во внешнее электрическое поле E 0 → вызовет возникновение в нем некоторого перераспределения зарядов, которые входят в состав атомов или молекул. Следствием этого перераспределения является появление на поверхности диэлектрического образца избыточных нескомпенсированных связанных зарядов. Все заряженные частицы, которые образуют макроскопические связанные заряды, все так же входят в состав своих атомов.

Связанные заряды образуют электрическое поле E ‘ → направленное внутри диэлектрика противоположно вектору напряженности E 0 → внешнего поля: данный процесс носит название поляризации диэлектрика.

Вследствие поляризации полное электрическое поле E → = E 0 → + E ‘ → = 0 внутри диэлектрика становится по модулю меньше внешнего поля E 0 → .

Диэлектрическая проницаемость вещества – это физическая величина, которая есть отношение модуля напряженности E 0 → внешнего электрического поля, создаваемого в вакууме, к модулю напряженности E → полного поля в однородном диэлектрике.

Известно несколько механизмов поляризации диэлектриков: основные – это ориентационная и электронная поляризации. Проявление этих механизмов происходит в основном при поляризации газообразных и жидких диэлектриков.

Ориентационная или дипольная поляризация появляется, когда полярные диэлектрики состоят из молекул, у которых имеет место несовпадение центов распределения положительных и отрицательных зарядов. Такие молекулы представляют собой микроскопические электрические диполи.

Микроскопические электрические диполи – это нейтральная совокупность двух зарядов, являющихся равными по модулю и противоположными по знаку, расположенных на расстоянии друг от друга.

К примеру, дипольный момент имеет молекула воды, а также молекулы некоторых прочих диэлектриков ( H 2 S , N O 2 и т. д.).

Когда внешнее электрическое поле отсутствует, оси молекулярных диполей по причине теплового движения имеют хаотичную ориентацию, в связи с чем на поверхности диэлектрика и в любом элементе объема электрический заряд в среднем является равным нулю.

Если внести диэлектрик во внешнее поле E 0 → , возникнет частичная ориентация молекулярных диполей. Вследствие этого поверхность диэлектрика получит нескомпенсированные макроскопические связанные заряды, создающие поле E ‘ → направленное навстречу внешнему полю E 0 → (рис. 1 . 5 . 3 ).

Рисунок 1 . 5 . 3 . Ориентационный механизм поляризации полярного диэлектрика.

Поляризация полярных диэлектриков обладает сильной зависимостью от температуры, поскольку тепловое движение молекул выступает в качестве дезориентирующего фактора.

Электронный или упругий механизм возникает при поляризации неполярных диэлектриков, молекулы которых не имеют при отсутствии внешнего поля дипольного момента. Электрическое поле, воздействуя на молекулы неполярных диэлектриков, вызывает их деформацию – положительные заряды смещаются в направлении вектора E 0 → а отрицательные – в противоположном направлении. В итоге каждая молекула становится электрическим диполем, ось которого имеет направление вдоль внешнего поля. Поверхность диэлектрика получает нескомпенсированные связанные заряды, которые создают свое поле E ‘ → имеющее направление навстречу внешнему полю E 0 → Таким образом происходит поляризация неполярного диэлектрика (рис. 1 . 5 . 4 ).

Деформация неполярных молекул, испытывающих влияние внешнего электрического поля, не имеет зависимости от теплового движения, т.е. поляризация неполярного диэлектрика не зависит от температуры.

В качестве примера неполярной молекулы можно рассмотреть молекулу метана C H 4 , в которой четырехкратно ионизированный ион углерода C 4 – расположен в центре правильной пирамиды; в вершинах этой пирамиды – ионы водорода H + . Наложение внешнего электрического поля вызовет смещение иона углерода из центра пирамиды: в этом случае у молекулы возникнет дипольный момент, пропорциональный внешнему полю.

Рисунок 1 . 5 . 4 . Поляризация неполярного диэлектрика.

В электрическом поле E ‘ → связанных зарядов, которое возникает при поляризации полярных и неполярных диэлектриков, происходит его изменение по модулю прямо пропорционально модулю внешнего поля E 0 → . В электрических полях значительной силы указанная закономерность может нарушаться: в таком случае получают проявление различные нелинейные эффекты. Для полярных диэлектриков в сильных полях возможно наблюдать эффект насыщения.

Эффект насыщения – это выстраивание всех молекулярных диполей вдоль силовых линий.

Когда диэлектрики неполярны, сильное внешнее поле, которое можно сравнить по модулю с внутриатомным полем, имеет возможность значимо деформировать атомы или молекулы вещества с изменением их электрических свойств. Но подобные явления почти никогда не наблюдаются, поскольку для этого необходимы поля, имеющие напряженность порядка 10 10 – 10 12 В / м . При этом гораздо раньше наступает электрический пробой диэлектрика.

Электронная поляризация – это процесс поляризации, при котором непарные молекулы получают деформацию электронных оболочек.

Этот механизм универсален, так как деформация электронных оболочек под влиянием внешнего поля происходит в атомах, молекулах и ионах любого диэлектрика.

Ионная поляризация – это поляризация твердых кристаллических диэлектриков, следствием которой является смещение ионов различных знаков, составляющих кристаллическую решетку, в противоположных направлениях при воздействии внешнего поля. В результате смещения на гранях кристалла образуются связанные (нескомпенсированные) заряды.

В качестве примера описанного механизма, можно рассмотреть поляризацию кристалла N a C l , в котором ионы N a + и C l – составляют две подрешетки, вложенные друг в друга. При отсутствии внешнего поля каждая элементарная ячейка кристалла N a C l является электронейтральной и не обладающей дипольным моментом. Во внешнем электрическом поле обе подрешетки сместятся в противоположных направлениях, т. е. кристалл подвергнется процессу поляризации.

Когда происходит процесс поляризации неоднородного диэлектрика, связанные заряды могут появиться не только на поверхности, но и в объеме диэлектрика. В таком случае электрическое поле E ‘ → связанных зарядов и полное поле E → будут обладать сложной структурой, зависящей от геометрии диэлектрика. Утверждение о том, что электрическое поле _formula_ в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем E → точно верно лишь, когда речь идет об однородном диэлектрике, который заполняет все пространство, где создано внешнее поле. В частности:

В случае, когда в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд Q , напряженность электрического поля E → этого точечного заряда и потенциал φ в ε раз меньше, чем в вакууме. Запишем данное утверждение в виде формул:

E → = 1 4 π ε 0 · Q ε r 3 r → , φ = 1 4 π ε 0 Q ε r .

Диэлектрики и проводники в электрическом поле. Поле внутри проводников и диэлектриков

Лекция № 14 Диэлектрики и проводники в электрическом поле. Поляризация.

1 Проводники в электрическом поле

Если полюса батарейки замкнуть металлической проволокой, по ней пойдёт электрический ток. Заменим проволоку стеклянной палочкой — никакого тока не возникнет. Металл является проводником, а стекло — диэлектриком.

Проводники отличаются от диэлектриков наличием свободных зарядов — заряженных частиц, положение которых не связано с какой-то точкой внутри вещества. Свободные заряды приходят в движение под действием электрического поля и могут перемещаться по всему объёму проводника.

Проводники — это в первую очередь металлы. В металлах свободными зарядами являются свободные электроны. Откуда они там берутся? Это особенность металлической связи. Дело в том, что валентный электрон, находящийся на внешней электронной оболочке атома металла, весьма слабо связан с атомом. При взаимодействии атомов металла их валентные электроны покидают свои оболочки, «отправляясь в путешествие» по всему пространству металла.

Проводниками являются также электролиты. Так называются растворы и расплавы, свободные заряды в которых возникают в результате диссоциации молекул на положительные и отрицательные ионы. Бросим, например, в стакан воды щепотку поваренной соли. Молекулы NaCl распадутся на ионы Na+ и Cl−. Под действием электрического поля эти ионы начнут упорядоченное движение, и возникнет электрический ток.

Природная вода, даже пресная, является проводником из-за растворённых в ней солей6 (но, конечно, не таким хорошим, как металлы). Человеческое тело в основным состоит из воды, в которой также растворены соли (хлориды натрия, калия, кальция, магния). Поэтому наше тело также служит проводником электрического тока.

Из-за наличия свободных зарядов, способных перемещаться по всему объёму, проводники обладают некоторыми характерными общими свойствами.

1.1 Поле внутри проводника

Первое общее свойство проводников в электростатическом поле состоит в том, что напряжённость поля внутри проводника везде равна нулю.

Докажем от противного, как в математике. Предположим, что в какой-то области проводника имеется электрическое поле. Тогда под действием этого поля свободные заряды проводника начнут направленное движение. Возникнет электрический ток — а это противоречит тому, что мы находимся в электростатике.

Конечно, такое рассуждение не оставляет ощущения удовлетворённости. Хотелось бы понять, почему обнуляется поле внутри проводника. Давайте попробуем.

Рассмотрим незаряженный проводящий шар, помещённый во внешнее электростатическое поле E. Для простоты считаем это поле однородным, но наши рассуждения останутся верными и в общем случае.

Под действием электрического поля E свободные электроны нашего шара скапливаются в левом его полушарии, которое заряжается отрицательно. Справа остаётся некомпенсированный положительный заряд. Возникновение этих зарядов, как вы помните, называется электростатической индукцией: заряды на поверхности проводника индуцируются (т. е. наводятся) внешним электростатическим полем. Подчеркнём ещё раз, что происходит реальное разделение зарядов: если сейчас распилить шар по диаметру в вертикальной плоскости, то получатся два разноимённо заряженных полушария.

Индуцированные заряды создают своё поле Ei , направление которого внутри шара оказывается противоположным внешнему полю (рис. 1).

Перестроение свободных зарядов шара продолжается до тех пор, пока поле Ei не компенсирует полностью внешнее поле E во всей области внутри шара. При наступлении этого момента (а наступает он почти мгновенно) результирующее поле внутри шара станет равным нулю, дальнейшее движение зарядов прекратится, и они окончательно займут свои фиксированные статические положения на поверхности шара.

А что будет в области снаружи шара? Поле Ei и тут накладывается на внешнее поле E, искажая его тем сильнее, чем ближе к шару расположена точка наблюдения. На больших расстояниях от шара внешнее поле почти не изменится. В результате картина линий напряжённости будет иметь примерно следующий вид (рис. 2).

Рис. 2 Поле внутри проводника равно нулю

До сих пор наши рассуждения относились к случаю незаряженного проводника. Что изменится, если проводнику, помещённому в электростатическое поле, сообщить вдобавок некоторый заряд q?

Легко понять, что результирующее поле внутри проводника всё равно окажется равным нулю. В самом деле, заряд q начнёт перераспределяться по поверхности проводника таким образом, что поле Ei этого заряда внутри проводника будет направлено против внешнего электростатического поля E. Перераспределение будет продолжаться до тех пор, пока оба поля E и Ei не компенсируют друг друга во всей внутренней области проводника.

Таким образом, поле внутри проводника равно нулю вне зависимости от того, заряжен проводник или нет. Любой проводник, помещённый в электростатическое поле, как бы «выталкивает» внешнее поле из своей внутренней области.

1.2 Заряд внутри проводника

Следующий общее свойство проводников состоит в том, что объёмная плотность зарядов внутри проводника везде равна нулю. Сформулируем это более подробно.

Какую бы область внутри проводника мы ни взяли, её суммарный заряд окажется равен нулю. Не скомпенсированные заряды, если они имеются, располагаются целиком на поверхности проводника.

Строгое доказательство этого утверждения опирается на фундаментальную теорему Гаусса, которую в школе не проходят. А неформальное объяснение очень простое: если бы внутри проводника имелись не скомпенсированные заряды, то они создавали бы там электрическое поле. Но электрического поля внутри проводника нет — стало быть, нет и зарядов.

Отсюда следует ещё один замечательный факт: если внутри проводника имеется полость, то поле в этой полости равно нулю. В самом деле, создадим внутри проводника полость, изъяв часть вещества. Поле как было равно нулю до изъятия, так нулевым и останется — ведь заряд вынутого вещества равен нулю! Наши манипуляции не изменили ту статическую конфигурацию зарядов на поверхности проводника, которая создаёт нулевое поле во всех точках внутри проводника.

На явлении исчезновения поля в полости внутри проводника основана так называемая электростатическая защита. Если нужно уберечь от внешних электростатических полей какое- либо устройство, его помещают в металлический ящик (или окружают металлической сеткой), обнуляя напряжённость поля в пространстве вокруг устройства.

1.3 Поле вне проводника

Теперь рассмотрим область пространства, внешнюю по отношению к проводнику. Оказывается, линии напряжённости электрического поля входят в проводник (или выходят из него) перпендикулярно поверхности проводника.

Посмотрите ещё раз на рис. 2. Вы видите, что любая силовая линия, пересекающая шар, направлена точно под прямым углом к его поверхности.

Почему так получается? Давайте снова проведём доказательство от противного. Предположим, что в некоторой точке поверхности проводника силовая линия не перпендикулярна поверхности. Тогда в данной точке имеется составляющая вектора напряжённости, направленная по касательной к поверхности проводника — так называемая касательная составляющая вектора напряжённости. Под действием этой касательной составляющей возникнет электрический ток — а это противоречит тому, что мы находимся в электростатике.

Иными словами, заряды на поверхности проводника (при помещении проводника во внешнее поле или при сообщении проводнику заряда) перестраиваются до тех пор, пока линии напряжённости, уходящие в окружающее пространство, в каждой точке поверхности проводника не окажутся перпендикулярны этой поверхности (а внутри проводника не исчезнут вовсе).

1.4 Потенциал проводника

Раньше мы говорили о потенциале той или иной точки электростатического поля. Большой интерес представляют множества точек, потенциал которых одинаков. Один пример такого множества мы знаем — это эквипотенциальные поверхности. Другим замечательным примером служит проводник.

Все точки проводника имеют одинаковый потенциал. Иными словами, разность потенциалов между любыми двумя точками проводника равна нулю.

В самом деле, если бы между какой-либо парой точек проводника существовала ненулевая разность потенциалов, возник бы ток от одной точки к другой — ведь в этом случае электрическое поле совершало бы ненулевую работу по перемещению зарядов между данными точками. Но в электростатике никакого тока быть не может. Потенциал какой-либо (и тогда любой) точки проводника называется потенциалом проводника.

Как видим, проводник представляет собой «эквипотенциальный объём». В частности, поверхность проводника является эквипотенциальной поверхностью. Это даёт дополнительное объяснение утверждения предыдущего пункта — мы же знаем, что линии напряжённости электростатического поля перпендикулярны эквипотенциальным поверхностям.

1.5 Напряжённость и потенциал поля проводящей сферы

Рассмотрим металлическую сферу радиуса R, которой сообщён заряд q. Нас интересуют напряжённость и потенциал электростатического поля, создаваемое сферой в каждой точке пространства. Везде далее сферу можно заменить шаром — от этого ровным счётом ничего не изменится. Начнём с напряжённости поля. Внутри сферы, как мы уже знаем, напряжённость поля равна нулю. Вне сферы напряжённость оказывается такой же, как если бы заряд q был точечным и находился в центре сферы. Итак:

На рис. 3 показаны линии напряжённости поля положительно заряженной сферы и график зависимости модуля вектора напряжённости от расстояния до центра сферы.

Рис. 3 Напряжённость поля заряженной сферы

Потенциал поля вне сферы равен потенциалу поля точечного заряда q, расположенного в центре сферы. Внутри сферы потенциал везде одинаков и совпадает с потенциалом точек поверхности сферы:

Вот как выглядит график зависимости потенциала положительно заряженной сферы от расстояния до её центра (рис. 4):

Рис. 4 Потенциал поля заряженной сферы

2 Диэлектрики в электрическом поле

В отличие от проводников, в диэлектриках нет свободных зарядов. Все заряды являются связанными: электроны принадлежат своим атомам, а ионы твёрдых диэлектриков колеблются вблизи узлов кристаллической решётки.

Соответственно, при помещении диэлектрика в электрическое поле не возникает направленного движения зарядов. Поэтому для диэлектриков не проходят наши доказательства свойств проводников — ведь все эти рассуждения опирались на возможность появления тока. И действительно, ни одно из четырёх свойств проводников, сформулированных в предыдущей статье, не распространяется на диэлектрики.

1.Напряжённость электрического поля внутри диэлектрика может быть не равна нулю.

2.Объёмная плотность заряда в диэлектрике может быть отличной от нуля.

3.Линии напряжённости могут быть не перпендикулярны поверхности диэлектрика.

4.Различные точки диэлектрика могут иметь разный потенциал. Стало быть, говорить о «потенциале диэлектрика» не приходится.

2.1 Диэлектрическая проницаемость

Но, тем не менее, одно важнейшее общее свойство у диэлектриков имеется, и вам оно известно (вспомните формулу напряжённости поля точечного заряда в диэлектрике!). Напряжённость поля уменьшается внутри диэлектрика в некоторое число ε раз по сравнению с вакуумом. Величина ε даётся в таблицах и называется диэлектрической проницаемостью диэлектрика.

Давайте разберёмся, каковы причины ослабления поля в диэлектрике. Рассмотрим диэлектрик, помещённый во внешнее однородное (для простоты) поле E. Опыт показывает, что на противоположных поверхностях диэлектрика появляются заряды разных знаков.

Рис. 5 Ослабление поля внутри диэлектрика

Эти индуцированные заряды расположены так, что создаваемое ими поле Ei внутри диэлектрика направлено против внешнего поля E0 (рис. 5, слева). При этом Ei

Проводники и диэлектрики в электростатическом поле

Урок 63. Физика 10 класс

Конспект урока “Проводники и диэлектрики в электростатическом поле”

Как вы знаете из курса физики восьмого класса, все тела можно классифицировать, в соответствии с их способностью проводить электрический ток. Тело может являться проводником, полупроводником или диэлектриком. Проводниками называют тела, проводящие электричество, а диэлектриками называют тела, не проводящие электричество.

Полупроводники — это тела, которые меняют свои свойства проводимости в зависимости от внешних условий. Но о полупроводниках мы поговорим позже, а сегодня мы рассмотрим проводники и диэлектрики. Рассмотрим, что происходит с проводником, помещенным в электростатическое поле. Конечно, к проводникам, в первую очередь, относятся металлы, в которых существуют, так называемые, свободные заряды. Свободные заряды — это электрические заряды, способные перемещаться внутри проводника. Как вы знаете, в металлах наблюдается металлическая связь. Нейтральные атомы металла начинают взаимодействовать друг с другом, в результате чего, некоторые электроны отрываются от атомов и становятся свободными. Эти электроны начинают участвовать в тепловом движении и могут перемещаться по всему проводнику в случайных направлениях. Иными словами, свободные электроны в проводнике ведут себя подобно молекулам газа. Поскольку все атомы изначально электрически нейтральны, если они теряют электрон, они становятся положительно заряженными ионами.

Таким образом, в проводниках наблюдается следующая картина: положительно заряженные ионы оказываются окружены так называемым электронным газом. Конечно, не надо думать, что электроны образуют какой-то реальный газ. Просто их движение очень напоминает хаотическое движение молекул газа.

Рассмотрим случай, когда металлический проводник находится в однородном электростатическом поле.

Как вы знаете, под действием электрического поля свободные электроны приходят в упорядоченное движение (то есть, в проводнике возникает электрический ток). В результате одна сторона проводника заряжается отрицательно, а другая — положительно. Это явление называется электростатической индукцией. То есть электростатическая индукция — это явление наведения собственного электростатического поля под воздействием внешнего электрического поля.

Итак, из-за электростатической индукции, возникает другое электростатическое поле, создаваемое появившимися зарядами. По принципу суперпозиции полей, это поле накладывается на внешнее поле и компенсирует его. Из этого мы можем сделать очень важный вывод: напряженность электростатического поля внутри проводника равна нулю:

Этот факт используется для создания электростатической защиты: чувствительные к электрическому полю приборы, помещаются в металлические ящики. В настоящее время даже некоторые виды спецодежды включают в себя современные электропроводящие материалы, которые создают внутри костюма замкнутое пространство, защищенное от воздействия электрических полей.

Впервые, эксперимент, подтверждающий отсутствие электростатического поля внутри проводника, провел Майкл Фарадей еще в 1836 году. По его указанию большую деревянную клетку оклеили листами оловянной фольги (которая является проводником). Предварительно клетку изолировали от земли и сильно зарядили ее (так что при приближении к ней тел, с ее поверхности вылетали искры).

Тем не менее, сам Фарадей совершенно спокойно находился внутри данной клетки. Более того, в его руках был исправный электроскоп, который показывал полное отсутствие электрического поля. Впоследствии, подобные конструкции получили название «клетка Фарадея».

Необходимо отметить еще один важный факт: вблизи поверхности (вне проводника) линии напряженности электростатического поля перпендикулярны этой поверхности.

Если бы это было не так, и какая-то линия напряженности была бы не перпендикулярна поверхности, то это привело бы к движению свободных зарядов. Такое движение продолжается до тех пор, пока все силовые линии не станут перпендикулярны поверхности проводника. Надо сказать, что весь статический заряд любого проводника находится на поверхности этого проводника. В этом легко убедиться, поскольку мы уже выяснили, что напряженность электростатического поля внутри проводника равна нулю. Следовательно, внутри проводника никакого заряда нет, поскольку в противном случае, он создавал бы отличную от нуля напряженность.

Теперь давайте поговорим о диэлектриках. Диэлектрики в электростатическом поле ведут себя иначе, чем проводники. Диэлектрики, наоборот, не проводят ток, но внутри них может существовать электрическое поле.

Дело в том, что в диэлектриках не возникают свободные заряды, поскольку между ядрами атомов и электронами существует довольно сильная связь. Приведем два классических примера распределения электрического заряда. Как вы знаете, ядро водорода состоит из одного протона, а вокруг этого протона вращается один электрон. В целом, атом электрически нейтрален. Электрон вращается вокруг протона с очень большой скоростью: за одну секунду он делает порядка 10 15 оборотов. Это говорит нам о том, что каждую микросекунду электрон оказывается в любой точке своей орбиты миллионы раз. Поэтому, смело можно считать, что в среднем по времени центр распределения отрицательного заряда находится в центре атома, то есть совпадает с положительно заряженным ядром.

Тем не менее, есть и другие случаи. Например, молекула поваренной соли состоит из атома натрия и атома хлора. Из курса химии вы знаете, что атом хлора имеет 7 валентных электронов, а у атома натрия всего один валентный электрон. Поэтому, в процессе образования молекулы, атом хлора захватывает электрон натрия, в результате чего образуется система из двух ионов. Теперь центр распределения отрицательного заряда приходится на ион хлора, а центр распределения положительного заряда приходится на ион натрия. Тем не менее, в целом молекула остается электрически нейтральна. Подобные системы называются электрическими диполями.

В связи с этим, разделяют два вида диэлектриков: неполярные и полярные. Неполярные диэлектрики — это диэлектрики, состоящие из атомов или молекул, у которых центры распределения положительных и отрицательных зарядов совпадают.

И наоборот, полярными диэлектриками называются диэлектрики, состоящие из атомов или молекул, у которых центры распределения положительных и отрицательных зарядов не совпадают.

О поляризации диэлектриков мы поговорим более подробно в одном из следующих уроков. А сейчас давайте рассмотрим величину, характеризующую свойство диэлектрической среды, которая называется диэлектрической проницаемостью. Эта величина показывает, во сколько раз кулоновская сила взаимодействия между двумя точечными зарядами в данной среде меньше, чем кулоновская сила взаимодействия этих же зарядов в вакууме:

Таким образом, мы можем записать закон кулона для произвольной среды:

В формулу добавляется диэлектрическая проницаемость, то есть, характеристика среды. Диэлектрические проницаемости многих сред измерены и сведены в таблицы. Эти величины измерены экспериментально, например, с помощью измерения кулоновских сил тех же зарядов в различных средах.

Читать еще:  Начались разработки электрического самолета
Ссылка на основную публикацию
Adblock
detector