Изобретен транспорт на гироскопических колоннах
Centr86.ru

Ремонт бытовой техники

Изобретен транспорт на гироскопических колоннах

Изобретен транспорт на гироскопических колоннах

Антимракобес: наука, технологии, скептицизм

Одна из самых волнующих проблем больших городов заключается в высоком дорожном трафике. Помимо того, что пробки создают особую сложность движения по дорогам для обычных водителей, они также замедляют движение аварийно-спасательных служб, например пожарных машин. Теперь у инжиниринговой компании Dahir Insaat есть решение этой проблемы: она предложила концепцию гироскопического транспорта второго и третьего уровней, то есть способного двигаться над автомобилями.

Новая концепция — работа Дахира Семенова, российского инженера и изобретателя и владельца Dahir Insaat, живущего в Турции.

Концептуальные транспортные средства оснастили несколькими генераторами, заряжающимися от солнечных батарей, которые будут поддерживать гироскопическую систему в рабочем состоянии и не позволят транспорту перевернуться.

Компания Dahir Insaat представила свое видение нового использования технологии гироскопа в следующем видео:

Новые гироскопические машины смогут заменить весь общественный транспорт на дорогах, и в первую очередь машины аварийно-спасательных служб. Один из концептов представляет собой гироскопическую пожарную машину, оснащенную 20-моторным летающим дроном. Когда машина прибывает на место пожара, беспилотник выдвигается из ее крыши и поднимает пожарных на нужную высоту.

Скорее всего, новый концептуальный проект Дахира Семенова не появится на российских дорогах в ближайшие десятилетия. Однако подобные концепты могут составить конкуренцию проектам Илона Маска, который в настоящее время работает над сетью многоуровневых туннелей под городом для перераспределения дорожного трафика.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

О бешенстве просто

Однажды мой очень далекий знакомый пошел на охоту.
Из чащи, сердито топая, на него вышел йошъ.
— О! — закричал знакомый. — Йошъ! Йошъ зверь, что надо!
Йошъ тоже считал, что он, «что надо», поэтому знакомого укусил.
— Аха-ха! — сказал знакомый, тряся прокушенным пальцем. — Зело ты свиреп! Прямо вот убил!
Но спустя пару месяцев знакомый смеяться перестал. Потому что еж его и вправду убил.

Тут в принципе, можно было бы закончить эту грустную и поучительную историю, дорогие друзья. Но наш канал образовательный, а идиотов в мире много.

Бешенство — это инфекционная вирусная болезнь. После проявления клинических симптомов она всегда заканчивается летальным исходом.
Это не редкая. А очень распространенная болезнь. Ее полно в России. В том числе, в Московской области. И даже в некоторых районах Москвы, где порой устанавливают карантин по бешенству.

В 95 процентов бешенство передают собаки. В особенности бездомные. Но его также передают барсуки, лисы, еноты, белки, ежи, кошки, летучие мыши (не в нашем регионе) и многие другие.

Как же проявляется бешенство у человека? Ну, если он долбодятел и после укуса не сделал прививку.
А сперва никак. Оно может проявиться через месяц. Или год. Даже есть случаи, когда спустя 14 лет, из-за обострения каких-то факторов. Бешенство — штука медленная и коварная.
Сперва легкая температура, боль в месте укуса (которого давно уже может и не быть), затем, спустя пару дней, вас все начинает бесить. Свет. Звуки. Вода (слышишь как льется вода и сразу хочется блевать или сбежать), сквозяк (вплоть до судорог), агрессия. Происходит воспаление головного и спинного мозга.
Затем наступает развязка — период паралича. Рот открыт, глаза на выкате, личность полностью уничтожена, температура 42, голод такой, что можно есть и камни и стекло.
Ну, и собственно смерть.

Вирус бешенства пытается выжить. Поэтому сперва он прячет свою жертву от света, в укромном уголке, набираясь сил. Затем блокирует ей глотание, чтобы все время был голод и усиливает слюноотделение. Затем вызывает агрессию, чувство голода и отправляет на поиски новых носителей. Чтобы этой слюной полной вируса заразить новых жертв и распространиться дальше.
Почти как у зомби, но только в реальности.

Я к чему это все.
Если ваш котик находится на свободном выгуле, если ваш пес дерется с дворовыми собаками, а вы, эдакий дятел, не сделали своему питомцу ежегодную прививку от бешенства, а потом он у вас лежит в темноте под диваном и ведет себя как-то странно — не надо лезть к больному животному. Если к вам бежит дружелюбная лисица с пеной в пасти, не надо бежать к ней с обнимашками. Не надо брать собаку из приюта или улицы, если она не привита (привейте ее) Если вашего ребенка цапнула белочка или кавайный ежик — не надо мазать место укуса йодом.
Промывайте рану, минимум 15 минут, желательно щелочным мылом, не давайте крови останавливаться, при глубоких ранах мойте шприцем. И сразу же везите на укол. Чтобы вирус не попал в ЦНС.
40 уколов в живот это миф. Сейчас есть новые препараты, например «Кокав» или «Рабипур».

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Русский изобретатель во главе мирового прогресса: история забытых гирокаров

Чтобы максимально просто объяснить суть гирокаров, нужно начать с детской игрушки — юлы. С технической точки зрения юла — это маховик, способный долго удерживать заложенную в нём кинетическую энергию, сохранять горизонтальное положение и служить мотором для привода различных механизмов. Комплектное устройство с быстровращающимся маховиком получило название гироскоп (от греческого «гиро» — колесо) и послужило источником энергии для уникальных гирокаров и даже гиробусов.

Первенство по применению маховиков на транспорте принадлежит России. Еще в XVIII веке изобретатель Иван Кулибин оснастил свою «самокатку» горизонтальным маховиком, который набирал энергию на спусках и затем помогал «водителю» на подъёмах. В 1860 году эту идею развил инженер путей сообщения Карл Шуберский, предложивший повозку для доставки грузов по рельсам, которую назвал маховозом.

Между задних колес повозки Кулибина хорошо виден маховик. 1791 год

Газетная реклама американской легковушки с гироскопом. 1908 год

В 1905 году англичанин Фредерик Ланчестер получил патент на простейшую четырехколесную тележку с вертикальным маховиком и механическим приводом колес. Позднее американская фирма Gyroscope Car безуспешно пыталась наладить выпуск гирокаров без сцепления и коробки передач, внешне не отличавшихся от обычных легковушек. Их оборудовали 16-сильным бензиновым мотором для разгона горизонтального маховика и цепной передачей на колеса.

Легендарный русский гирокар Шиловского

Первую и единственную в мире полноценную самоходную безрельсовую машину с гироскопом разработал и построил известный русский государственный деятель и талантливый изобретатель-самоучка граф Петр Петрович Шиловский. Это был «богато одарённый человек с огромным честолюбием», перу которого принадлежали многие оригинальные проекты и монографии по теории, конструированию и применению гирокаров. Впервые свою идею маховоза он воплотил в жизнь в 1911 году, представив модель однорельсовой железной дороги с тремя вагончиками, снабженными вращавшимися маховичками.

На следующий год Шиловский взялся за реализацию своего главного изобретения — двухколесного одноколейного автомобиля с маховиком, обеспечивавшим ему устойчивость как во время движения, так и на стоянке.

Первый вариант гирокара Петра Шиловского с двумя опущенными опорными колёсиками. 1913 год

Слишком сложная, дорогая и непонятная машина не получила поддержки Царского правительства, и в 1912 году изобретатель уехал в Англию. Там за сборку гироскопического автомобиля Gyrocar взялась компания Wolseley Tool and Motor Car из Бирмингема, и впоследствии за границей гирокар Шиловского всегда считали разработкой и приоритетной собственностью Великобритании.

Окончательный вариант машины Шиловского с 24-сильным мотором Wolseley. Осень 1913 года

Работы над гирокаром начались в октябре 1912 года с испытания двигателя и рессор подвески. Шасси было готово 14 июля 1913-го, а комплектный автомобиль появился глубокой осенью того же года. 27 ноября его завели, подняли боковые поддерживающие колёса, и он благополучно проехал несколько метров, не опрокинувшись. 28 апреля 1914 года в центре Лондона состоялся первый публичный показ машины с пассажирами, которая передвигалась со скоростью пешехода, демонстрируя свою феноменальную устойчивость.

Петр Шиловский на своем гирокаре (на переднем сиденье справа). Лондон, июнь 1914 года

Демонстрационный показ гироскопического авто на улицах Лондона. Лето 1914 года

Автомобиль Шиловского представлял собой крупную, сложную и тяжелую машину массой около трёх тонн с открытым четырехместным кузовом на лонжеронном шасси. В её передней части устанавливался обычный четырехцилиндровый мотор в 24 силы от легковушки Wolseley 16/20НР. От него крутящий момент на заднее ведущее колесо передавался через сцепление, четырехступенчатую коробку передач, цепную и карданную передачи и червячный редуктор. Передняя подвеска напоминала развитую вилку мотоцикла, заднее колесо подвешивалось на двух продольных консольных рессорах.

Шасси с четырехметровой колесной базой дает общее представление о конструкции гирокара

На виде спереди видна мощная трубчатая подвеска на двух продольных консольных рессорах

Одновременно двигатель приводил электрогенератор, подававший ток на электромотор, который за 8–10 минут разгонял горизонтальный кованый маховик диаметром чуть более одного метра до 3000 оборотов в минуту. Он весил 610 килограммов, имел толщину 12 сантиметров и размещался между сиденьями в средней части машины.

Читать еще:  Как сделать триммер своими руками из болгарки, пылесоса, дрели, бензопилы

Эскизы компоновки гирокара и размещения основных узлов из монографии Шиловского

Управление гироскопом обеспечивали вертикальная наклонявшаяся обойма маховика и запутанная система маятников, зубчатых секторов, шестерен и шариковых датчиков, заставлявшая верхний конец вала маховика отклоняться вперед или назад. При падении оборотов автоматически включался разгонный электромотор, возвращавший автомобиль в вертикальное положение.

С началом Первой мировой войны Шиловский вернулся в Россию, а в 1915-м «в целях обеспечения сохранности при бомбежках» англичане «надежно спрятали» гирокар, просто сбросив его в яму, выкопанную близ соседней железнодорожной станции. И на 20 с лишним лет о нём забыли.

На родине Шиловский пытался организовать строительство однорельсовой железной дороги, но в 1922-м ее финансирование прикрыли, и Шиловский навсегда уехал в Англию. По его настоянию в 1938 году полусгнившую машину эксгумировали, подреставрировали и поместили в музей фирмы Wolseley. Через десять лет её отправили на слом.

Эксгумация легендарного гирокара, пролежавшего в земле 23 года. 1938 год

Антимракобес: наука, технологии, скептицизм

Популярные статьи

Российский инженер изобрел новый вид общественного транспорта

Одна из самых волнующих проблем больших городов заключается в высоком дорожном трафике. Помимо того, что пробки создают особую сложность движения по дорогам для обычных водителей, они также замедляют движение аварийно-спасательных служб, например пожарных машин. Теперь у инжиниринговой компании Dahir Insaat есть решение этой проблемы: она предложила концепцию гироскопического транспорта второго и третьего уровней, то есть способного двигаться над автомобилями.

Новая концепция — работа Дахира Семенова, российского инженера и изобретателя и владельца Dahir Insaat, живущего в Турции.

Концептуальные транспортные средства оснастили несколькими генераторами, заряжающимися от солнечных батарей, которые будут поддерживать гироскопическую систему в рабочем состоянии и не позволят транспорту перевернуться.

Компания Dahir Insaat представила свое видение нового использования технологии гироскопа в следующем видео:

Новые гироскопические машины смогут заменить весь общественный транспорт на дорогах, и в первую очередь машины аварийно-спасательных служб. Один из концептов представляет собой гироскопическую пожарную машину, оснащенную 20-моторным летающим дроном. Когда машина прибывает на место пожара, беспилотник выдвигается из ее крыши и поднимает пожарных на нужную высоту.

Скорее всего, новый концептуальный проект Дахира Семенова не появится на российских дорогах в ближайшие десятилетия. Однако подобные концепты могут составить конкуренцию проектам Илона Маска, который в настоящее время работает над сетью многоуровневых туннелей под городом для перераспределения дорожного трафика.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

«Альцгеймер от герпеса»

Credit: Dana Cairns, Tufts University

На этом снимке вы видите очередной довод в пользу инфекционной теории возникновения болезни Альцгеймера (таких теорий много и они обсуждаются достаточно давно). Статья в Science Advances, не решаясь заявить о причинно-следственной связи между вирусом герпеса и заболеванием, тем не менее показывает, что при инфицировании трехмерной клеточной модели мозга вирусом, в ткани происходит все то же самое, что и при болезни. В том числе — появление фибрилл бета-амилоида.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Биокомпозит увеличил срок годности фруктов на неделю

Внешний вид покрытой и чистой клубники

Pulickel Ajayan et al. / Advanced Materials, 2020

Материаловеды разработали съедобный биокомпозит на основе яичного белка, который позволил продлить срок годности фруктов на неделю.

По статистике ВОЗ за 2018 год более 800 миллионов человек по всему миру голодают. Программа устойчивого развития «Нулевой голод» направлена на искоренение голода и всех форм неполноценного питания к 2030 году. По некоторым оценкам примерно треть всей еды на Земле пропадает зря и не употребляется, что в первую очередь связывают с порчей продуктов за время транспортировки с ферм до магазинов. Для фруктов и овощей оценки еще хуже — 40-50 процентов портятся перед употреблением. Порча пищевых продуктов происходит из-за процессов потери воды и микробной активности.

На сегодняшний момент ученые нацелены на увеличение срока годности продуктов питания за счет методов, которые препятствуют испарению воды и росту микробов. Например, один из таких известных методов — нанесение воска, который производители давно используют для увеличения яркости фруктов. Но воск достаточно сложно смыть, а потому он попадает в организм, где расщепляется кишечными клетками на ионы, тем самым ингибируя некоторые метаболические процессы и разрушая мембраны. Остальные методы включают в себя охлаждение, упаковку в модифицированной газовой среде и нанесение парафиноподобных активных покрытий. Однако эти методы требуют дополнительного времени на обработку и приводят к удорожанию продуктов, а также влияют на внешний вид и вкус фруктов. Поэтому ученые ищут альтернативные подходы к продлению срока годности без изменения характеристик продуктов.

Мухаммед Рахман (Muhammad M. Rahman) и Пуликел Аджайан (Pulickel M. Ajayan) предложили для продления срока годности фруктов использовать дешевый биокомпозит на основе яичных компонентов, нанокристаллов целлюлозы и куркумина. Такое покрытие легко смывается с поверхности и не влияет на вкусовые качества. А по своим сохраняющим качествам биокомпозит обогнал воск и хитозан, продлив срок годности фруктов на неделю.

Путь получения покрытия из биокомпозита

Pulickel Ajayan et al. / Advanced Materials, 2020

Биокомпозит состоит из яичного белка, глицерина, сухого яичного желтка, куркумина и нанокристаллов целлюлозы. Яичный белок взят в качестве белковой основы за свою хорошую биосовместимость, глицерин же увеличивает эластичность хрупкого денатурированного белка. Для отталкивания воды в смесь добавили жирные кислоты из яичного желтка, а противомикробные и антиоксидантные свойства обеспечивает куркумин. Нанокристаллы целлюлозы армируют композит и усложняют проникновение воды и кислорода сквозь покрытие.

Авторы последовательно добавляли компоненты в воду при температуре в 80 градусов Цельсия, затем раствор охлаждали до комнатной температуры, после чего погружали в него фрукты.

Для оценки толщины такого слоя на поверхности банана ученые сделали срез кожуры и с помощью конфокального микроскопа измеряли толщину в нескольких точках — толщина колеблется в интервале 23-33 микрометра с надежностью в 95 процентов, что хорошо сопоставляется с толщиной покрытия фруктов фиброином в предыдущей работе.

Сравнение внешнего вида покрытых и чистых фруктов: банана, авокадо и папайи

Pulickel M. Ajayan et al./ Advanced Materials, 2020

Сравнение внешнего вида после разных покрытий хитозаном, воском и биокомпозитом

Pulickel M. Ajayan et al./ Advanced Materials, 2020

Снимок с конфокального микроскопа среза банана для измерение толщины

Pulickel M. Ajayan et al./ Advanced Materials, 2020

Материаловеды проверили эффективность биокомпозитного покрытия на четырех фруктах и ягодах: банане, авокадо, клубнике и папайе. После 8-11 дней выдержки на воздухе все непокрытые продукты меняли цвет и портились, в то время как покрытые не портились как минимум в течение недели. После пяти дней выдерживания клубника без покрытия потеряла 60 процентов влаги, тогда как покрытая на седьмой день потеряла только 35 процентов. Таким образом, биокомпозитное покрытие значительно продлевает срок годности фруктов и ягод. Портящиеся фрукты становятся более мягкими, а потому ученые решили проверить механические свойства покрытых продуктов на сжатие — все покрытые фрукты показали упрочнение относительно чистых.

Внешний вид внутренности фруктов после недели выдерживания

Pulickel M. Ajayan et al./ Advanced Materials, 2020

Пленка более толстого покрытия для экспериментов по пропусканию воды, кислорода и антимикробных свойств

Pulickel M. Ajayan et al./ Advanced Materials, 2020

Чтобы уточнить механизм защиты от потери свежести фруктов, авторы статьи исследовали покрытие на гидрофильность, цитотоксичность и антимикробные свойства. Гидрофильность поверхности оценивалась углом смачивания каплей воды — 71,4 градуса, что свидетельствует от гидрофильности поверхности, но в сравнении с другими материалами для упаковки, как желатин или ПЭТ, биокомпозитная поверхность более гидрофобная. Ученые провели испытания 100-микрометровой пленки на пропускание воды — за день 15 грамм воды проходит один миллиметр такой пленки с площадью в один квадратный метр, что сравнимо с пропускной способностью ПЭТ и воска, но значительно меньше других биополимеров. Другой важный параметр, влияющий на свежесть фруктов, — концентрация кислорода, биокомпозит по результатам эксперимента пропускает кислород гораздо медленнее, чем распространенный воск, крахмал и другие используемые упаковочные материалы.

Антимикробные свойства полностью подтвердились — ученые поместили бактерии кишечной палочки (Escherichia coli) на поверхность и после ночи выдержки их не обнаружили. Цитотоксичность авторы проверили, поместив раковые клетки поджелудочной железы в раствор компонентов с концентрацией 0,1 и 1 миллиграмм на миллилитр — после дня выдерживания не произошло изменений и более 90 процентов клеток остались живыми, что не удивительно, ведь покрытие состоит из веществ, давно применяемых в пищевой промышленности. Но такое покрытие с легкостью растворяется в воде и смывается с поверхности фруктов — покрытие толщиной в 100 микрометров растворялось в воде за две минуты. Таким образом, ученые доказали, что съедобное и смываемое покрытие из биокомпозита продлевает срок годности фруктов на неделю.

Читать еще:  Создана система «искусственного тела человека»

Растворение пластинки в воде при перемешивании

Pulickel M. Ajayan et al./ Advanced Materials, 2020

Существует много методов продления срока годности, активно используемых в современной пищевой промышленности. О том, как это можно сделать за счет ионизирующего излучения можете прочитать в нашем недавнем материале — «Я — смерть, уничтожитель инфекций».

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Эпоха акробатов: однорельсовые железные дороги

Идея о том, что выгодней перемещаться по одному рельсу, чем по двум, родилась у изобретателей в 1820-х годах. История хранит сведения о проекте «Дорога на столбах» Ивана Эльманова. Известно, что инженер из подмосковного села Мячково всячески пытался найти инвесторов под свой проект монорельса, но безуспешно. А в Англии тем временем был построен первый в мире реально действующий монорельс. По нему возили грузы на военно-морской верфи. В течение последующих лет с завидной регулярностью появлялись проекты одноколейного транспорта, но прорыв произошел примерно сто лет назад, когда конструкторы придумали использовать гироскоп для поддержания устойчивости одноколейных транспортных средств.

В 1907 году Август Шерль в Берлине и независимо от него Луи Бреннан в Лондоне продемонстрировали публике модели однорельсовых поездов. А уже через пару лет тот же Бреннан в Джилингхеме (Великобритания) показал полноразмерный вагон на 50 пассажиров.

Джилингхемское чудо 10 ноября 1909 году в Джилингхеме, городке на юго-востоке Англии, британцы могли увидеть чудо-локомотив Луи Бреннана в действии. Он ездил по одному рельсу и поддерживал равновесие за счет гироскопической системы. Все желающие могли прокатиться на его платформе.

Юла для взрослых

Детская игрушка юла, будучи раскрученной, может довольно долго стоять вертикально, касаясь опорной поверхности кончиком своей оси. По этому же принципу были устроены и экспериментальные поезда той эпохи. Гироскоп, или, как говорили раньше, жироскоп, размещался в специальном отделении одноколейного вагона и за счет своего вращения позволял ему не только катиться по рельсу или туго натянутому канату, но и стоять на месте.

Современники с большим оптимизмом отзывались об однорельсовых дорогах, полагая, что в скором времени они совсем вытеснят привычные двухрельсовые. Действительно, вознесенные над землей на легких и компактных виадуках, они были бы гораздо удобнее в качестве скоростного городского транспорта, нежели распространенные тогда трамваи и конки. Однорельсовые дороги дальнего следования из-за меньшей материалоемкости путей и повышенной скорости передвижения поездов обещали быть гораздо выгоднее привычных двухрельсовых. Большие надежды на изобретение возлагали и военные ведомства, заинтересованные возможностью быстрого строительства подъездных путей.

Но были и поводы для скепсиса. Нерешенным оставался вопрос постоянного поддержания равновесия подвижного состава. На двухколейном составе при остановке и стоянке можно было просто выключить двигатель, на одноколейном требовалось постоянно поддерживать вращение маховика. Конечно, можно было обойтись и без вращающегося гироскопа — для этой цели у вагонов имелись специальные предохранительные упоры. Они могли выручить в случае поломки двигателя и постепенного прекращения вращения маховика. Но пользоваться ими было не слишком удобно. Кроме того, каждая новая раскрутка массивного маховика требовала времени.

Как работал автомобиль Шиловского? Устойчивость двухколесного автомобиля поддерживалась за счет массивного ротора, вращавшегося с высокой угловой скоростью. При кренах и перемещениях пассажиров внутри автомобиля для поддержания стабильного положения кузова использовался гироскопический эффект. В горизонтальном положении автомобиль находился до тех пор, пока новое возмущение не вызывало нового наклона. Описанная работа гироскопического стабилизатора повторялась вновь, пока горизонтальное положение автомобиля снова не было восстановлено. Суть гироскопического эффекта в том, что если мы пытаемся повернуть ось вращающегося маховика в плоскости, перпендикулярной плоскости его вращения, то она будет поворачиваться не в том направлении, в котором ее пытаются сдвинуть. Работала система под держания равновесия следующим образом. При посадке пассажиров корпус автомобиля стремился повернуться вокруг продольной оси СС. При таком повороте металлический шар, находящийся внутри трубки переключателя, перекатывался в сторону наклона и замыкал одну из двух пар управляющих контактов. Тем самым включался электродвигатель, который создавал момент, воздействующий на гироскоп относительно оси BB. В зависимости от наклона автомобиля замыкалась одна из пар контактов, и электромотор вращался либо в одну, либо в другую сторону. Под воз действием электродвигателя гироскоп, а вместе с ним и кузов автомобиля получали прецессионное движение вокруг продольной оси СС. В результате кузов автомобиля выравнивался, уменьшая наклон к горизонту. Когда экипаж возвращался в исходное положение, шар размыкал управляющие контакты, электромотор переставал воздействовать на гироскоп и поворот автомобиля вокруг оси СС прекращался.

Наш рельс

Тем не менее опыты и расчеты показывали, что идея постройки однорельсовой дороги вполне здравая и сулит выгоду. Поэтому попытки построить такую дорогу неоднократно предпринимались. В 1911 году на Аляске строилась однорельсовая дорога протяженностью 160 км. О судьбе этого проекта история хранит молчание. А вот «Красная газета» от 15 апреля 1921 года сообщает: «Президиум ВСНX обсуждал вопрос о сооружении однорельсовой жироскопической железной дороги. Постановлено использовать ныне бездействующую бывшую царскую ветку Петроград — Детское Село — Александровка. Путиловский завод исполняет уже раму и корпус двухвагонного поездного состава. Пробный поезд будет готов через год. Он рассчитан на 150-верстную скорость в час. Такая скорость для двухрельсовых дорог была пока недоступна». Автором проекта этого поезда выступал Петр Петрович Шиловский.

Губернатор, влюбленный в механику

Представитель древнего дворянского рода, Петр Петрович получил юридическое образование, обучался юриспруденции в России и Германии. Вернувшись на родину, он работал следователем в Луге, под Петербургом, потом стал журналистом, затем опять занял должность следователя, теперь в Новоржеве. В свободное время играл на скрипке и даже всерьез подумывал о карьере музыканта.

Показав себя незаурядной личностью на административных должностях, Шиловский получил пост вице-губернатора в Уральске, затем в Екатеринославе и Симбирске. Наконец, в 1910 году Петр Петрович стал губернатором Костромы. Но, будучи государственным деятелем, Шиловский не забывал о своем увлечении — маховичном транспорте.

Весной 1909 года Шиловский получил патент за № 27091 на «Устройство для сохранения равновесия повозок или других находящихся в неустойчивом положении тел». Причем изобретение свое он запатентовал не только на родине, но и в Англии, Германии, Франции и США. «В природе нормальное, правильное, естественное передвижение вперед, — пишет изобретатель, — есть продвижение по линии, а не по плоскости».

История создания гироскопа и гироскопических приборов

В Пермском музее науки и техники ОАО «ПНППК» в рамках цикла еженедельных просветительских встреч состоялась беседа с доцентом ПГНИУ Николаевым Юрием Константиновичем об истории создания гироскопа и гироскопических приборов.

СПРАВКА

Автор и ведущий: Николаев Юрий Константинович, доцент ПГНИУ, действительный член Международной туристской академии, член геральдической комиссии при губернаторе Пермского края, член союза журналистов России, председатель Пермского отделения Всероссийского геральдического общества, член союза геральдистов России.

До изобретения гироскопа человечество использовало различные методы определения направления в пространстве. Издревле люди ориентировались визуально по удалённым предметам, в частности, по Солнцу. Уже в древности появились первые приборы: отвес и уровень, основанные на гравитации. В средние века в Китае был изобретён компас, использующий магнетизм Земли. В Европе были созданы астролябия и другие приборы, основанные на положении звёзд. Гироскоп изобрёл Иоганн Боненбергер в 1802 году и опубликовал описание своего изобретения в 1817 году. Однако французский математик Пуассон ещё в 1813 году упоминает Боненбергера как изобретателя этого устройства. Главной частью гироскопа Боненбергера был вращающийся массивный шар в кардановом подвесе. В 1832 году американец Уолтер Р. Джонсон придумал гироскоп с вращающимся диском. Карда́нов подве́с — универсальная шарнирная опора, позволяющая закреплённому в ней объекту вращаться одновременно в нескольких плоскостях. Главным свойством карданова подвеса является то, что если в него закрепить вращающееся тело, то оно будет сохранять направление оси вращения независимо от ориентации самого подвеса. Это свойство нашло применение в гироскопах, применяющихся в авиации и космонавтике. Держатели судовых компасов или просто сосудов с питьём в транспортных средствах тоже используют карданов подвес, который позволяет предмету находиться в вертикальном положении несмотря на толчки и тряску. Подвес получил своё название по имени Джероламо Кардано (1501 — 1576), который не только не изобрёл его, но даже и не претендовал на авторство: он описал это устройство в своей получившей широкую известность книге «De subtilitate rerum» («Хитроумное устройство вещей», 1550 г.). Карданов подвес был впервые изобретён греческим инженером Филоном Византийским в III в. до н.э. В одном из своих трудов Филон описывает восьмигранную чернильницу с отверстиями на каждой стороне. Можно было перевернуть восьмигранник любой стороной кверху, но чернила не проливались. Секрет заключался в том, что чернильница находилась в центре хитроумно установленных концентрических металлических колец, поэтому она сохраняла устойчивость независимо от положения. После античности карданов подвес был широко известен в мусульманском мире. В IX веке, через 1100 лет после изобретения, устройство стало снова известно в Европе благодаря арабам. А еще через 800 лет известный учёный Роберт Гук и другие изобретатели стали использовать этот принцип не для стабилизации центрального элемента, а для приложения внешних сил. Этому западному изобретению дали название универсального шарнира Гука. Именно оно легло в основу механизма силовой передачи современных автомобилей.

Читать еще:  Почему швейная машинка петляет
Компас нового времени, использующий карданов подвес (1570 г.)

Самое раннее упоминание этого устройства в китайской литературе относится к 140 г. до н.э. Предполагаемым изобретателем устройства считается Фан Фэн. Подвес Фан Фэна применялся в масляных лампах, в которых лампадка крепилась на кольцах, скрепленных в двух противоположных точках, что позволяло сохранять ей вертикальное положение. Принцип данного устройства был вскоре забыт. В сочинении «Всесторонние записки западной столицы», изданном в 189 г., сообщается что создателем «курительницы для постели» с применением особого подвеса был Дин Хуань. После этого карданов подвес часто применялся в разных устройствах. Начиная с эпохи Сун, с помощью карданова подвеса крепилось сиденье императора на паланкине, что позволяло сидеть ему вертикально, даже если носильщики наклоняли паланкин. В 1852 году французский учёный Фуко усовершенствовал гироскоп и впервые использовал его как прибор, показывающий изменение направления, через год после изобретения маятника Фуко, тоже основанного на сохранении вращательного момента. Именно Фуко придумал название «гироскоп». Фуко, как и Боненбергер, использовал карданов подвес. Преимуществом гироскопа перед более древними приборами является то, что он правильно работает в сложных условиях (плохая видимость, тряска, электромагнитные помехи). Однако гироскоп быстро останавливался из-за трения. Во второй половине XIX века Труве предложил использовать электродвигатель для разгона и поддержания движения гироскопа. Впервые на практике гироскоп был применён в 1896 году австрийским инженером Л.Обри для стабилизации курса торпеды. Следующее применение гироскопа в технике также относится к морскому делу. Гироскоп использовали при разработке морского указателя курса – гирокомпаса. Прототип современного гирокомпаса первым создал Герман Аншютц-Кэмпфе (запатентован в 1908), вскоре подобный прибор построил американский инженер Э. Сперри (запатентован в 1911). История изобретения гирокомпаса такова: немецкий инженер Герман Аншютц-Кэмпфе предложил проект экспедиции подводной лодки на северный полюс Земли. Для ориентации подводной лодки был необходим прибор для указания курса. Магнитный компас использовать было нельзя, так как в высоких широтах он не работает из-за больших возмущений магнитного поля Земли. К тому времени были известны работы французского инженера Артура Кребса (1889г.), который при проведении экспериментов на подводной лодке предложил смещать центр тяжести гироскопа с горизонтальным расположением оси вращения по вертикали , что фактически означало изобретение морского маятникового гирокомпаса. Экспедиция к северному полюсу Земли не состоялась, но Г. Аншютц-Кемпфе была предложена очень удачная конструктивная схема морского гирокомпаса. В последующие годы разрабатывалось множество гирокомпасов различных модификаций, но наиболее удачные из них принципиально почти не отличались от устройств Аншютца и Сперри. Э. Сперри пытался оспорить у Г.Аншютца-Кемпфе приоритет изобретения гирокомпаса в суде, но дело проиграл. Главным экспертом в этом судебном деле был Альберт Эйнштейн, который встал на сторону Г.Аншютца-Кемпфе. Морские гирокомпасы современной конструкции значительно усовершенствованы по сравнению с первыми моделями; они отличаются высокой точностью и надежностью и удобнее в эксплуатации. В XX веке гироскопы стали использоваться в самолётах, ракетах и подводных лодках. Русская авиация не только не отставала от зарубежных стран в деле использования гироскопических приборов на самолете, но часто являлась пионером их внедрения. Так, например, в 1917 г. русские летчики А.Н. Журавченко и Г.Н. Алехнович совершили на самолете «Илья Муромец» слепой полет, выдерживая прямолинейный курс в заданном направлении по гироскопическому указателю поворотов. Этот прибор, разработанный П.П. Шиловским специально для авиации, позволил провести самолет по заранее намеченному курсу при полном отсутствии видимости земных ориентиров. Работы советских ученых А.Н. Крылова, Б.В. Булгакова, С.С. Тихменева, Г.В. Коренева, А.Р. Бонина, Г.О. Фридлен-дера и многих других в содружестве с выдающимися конструкторами Е.Ф. Антиповым, Е.В. Ольманом, Р.Г. Чичикяном, А.И. Марковым и другими талантливыми инженерами обеспечили оснащение советской авиации высококачественными гироскопическими приборами. В двадцатых годах XX столетия в дополнение к указателю поворотов создаются авиационные гироскопические указатели, курса и горизонта, которые стали в настоящее время обязательными навигационными приборами самолета любого типа. В начале тридцатых годов советские конструкторы Д.А. Браславский, М.М. Качкачян и М.Г. Эйлькинд первыми в мире разработали, построили и испытали гиромагнитный компас, получивший в настоящее время широкое распространение в авиации всех стран мира. Идею определения местоположения объекта с помощью двукратного интегрирования по времени проекций вектора ускорения, измеряемого на борту, запатентовал Рейнгард Вуссов в 1905 году. Для этого он предложил поместить на объекте акселерометр, ось чувствительности которого стабилизировалась с помощью свободного гироскопа. Указанная заявка в своей основе содержала идею метода навигации, в дальнейшем названного инерциальным. Суть этого метода состоит в определении координат объекта посредством расположенных на нем гироскопов, маятников (акселерометров) и часов без использования во время движения сторонней информации. Кроме того, практически одновременно с Вуссовым были запатентованы идеи американского и русского изобретателей М. Керри (1903 г.) и В.В. Алексеева (1911 г.) инерциальных систем геометрического типа, которые должны обеспечивать определение координат объекта, движущегося на поверхности вращающегося земного шара. В 30е годы XX века были сформулированы основные принципы инерциальной навигации. Историю инерциальной навигации в нашей стране принято начинать с момента разработки в 1932 году авиационной приборной вертикали с интегральной коррекцией, невозмущаемой горизонтальными силами инерции. В дальнейшем идею этой разработки стали называть схемой Л.М. Кофмана и Е.Б. Левенталя. В соответствии с этой схемой гироплатформа с жестко связанными с нею двумя ньютонометрами (акселерометрами) управлялась сигналами, пропорциональными интегралам от показаний ньютонометров, причем коэффициент пропорциональности выбирался так, чтобы выполнялись условия невозмущаемости. Как легко показать, такое устройство является моделью маятника Шулера. Оно послужило прообразом инерциальных навигационных систем с горизонтируемой платформой. Следует заметить, что схема, близкая к схеме Кофмана-Левенталя, была предложена в Германии в 1934 году Иоганном Бойковым. В годы второй мировой войны в Германии были созданы первые гироскопические ракетные приборы. Система гироскопических приборов ракеты Фау-2, состоящая из гирогоризонта, гировертиканта и гироскопического датчика регулирования скорости полета, стала классической системой гироприборов в ракетной технике, не потерявшей своей актуальности и в настоящее время.

Литература.

1. Johann G. F. Bohnenberger (1817) «Beschreibung einer Maschine zur Erläuterung der Gesetze der Umdrehung der Erde um ihre Axe, und der Veränderung der Lage der letzteren» («Описание машины для объяснения законов вращения Земли вокруг своей оси и изменения направления последней») Tübinger Blätter für Naturwissenschaften und Arzneikunde, vol. 3, pages 72-83. В интернете: http://www.ion.org/museum/files/File_1.pdf

2. Simeon-Denis Poisson (1813) «Mémoire sur un cas particulier du mouvement de rotation des corps pesans» («Статья об особом случае вращательного движения массивных тел»), Journal de l’École Polytechnique, vol. 9, pages 247—262. В интернете: http://www.ion.org/museum/files/File_2.pdf

4.Walter R. Johnson (January 1832) “Description of an apparatus called the rotascope for exhibiting several phenomena and illustrating certain laws of rotary motion, ” The American Journal of Science and Art, 1st series, vol. 21, no. 2, pages 265—280. В интернете: http://books.google.com/books? >

5. Illustrations of Walter R. Johnson’s gyroscope («rotascope») appear in: Board of Regents, Tenth Annual Report of the Board of Regents of the Smithsonian Institution…. (Washington, D.C.: Cornelius Wendell, 1856), pages 177—178. В интернете: http://books.google.com/books? >

6. Wagner JF, “The Machine of Bohnenberger, ” The Institute of Navigation. В интернете: http://www.ion.org/museum/item_view.cfm?c >

7. L. Foucault (1852) “Sur les phénomènes d’orientation des corps tournants entraînés par un axe fixe à la surface de la terre, ” Comptes rendus hebdomadaires des séances de l’Académie des Sciences (Paris), vol. 35, pages 424—427. В интернете: http://www.bookmine.org/memoirs/pendule.html . Scroll down to «Sur les phénomènes d’orientation …»

8. (1) Julius Plücker (September 1853) “Über die Fessel’sche rotationsmachine, ” Annalen der Physik, vol. 166, no. 9, pages 174—177; (2) Julius Plücker (October 1853) “Noch ein wort über die Fessel’sche rotationsmachine, ” Annalen der Physik, vol. 166, no. 10, pages 348—351; (3) Charles Wheatstone (1864) “On Fessel’s gyroscope, ” Proceedings of the Royal Society of London, vol. 7, pages 43-48.

Ссылка на основную публикацию
Adblock
detector